onde piane

Ci proponiamo di trovare le caratteristiche che deve avere un'onda elettromagnetica monocromatica alla pulsazione ω che si propaga in un mezzo omogeneo, stazionario, lineare, isotropo, in assenza di sorgenti. A questo scopo sfruttiamo quanto visto nell'analisi delle funzioni d'onda in regime sinusoidale e teniamo conto della natura vettoriale dei campi elettromagnetici ponendo

$$\vec{E} = F e^{-\vec{\gamma} \cdot \vec{r}} \vec{p}$$

dove \vec{r} è il vettore posizione, F è una costante, generalmente complessa, che definisce l'ampiezza e la fase del campo elettrico in $\vec{r}=0$ e $\vec{\gamma}$ e \vec{p} sono vettori costanti, generalmente complessi. Il vettore di polarizzazione \vec{p} ($\vec{p} \cdot \vec{p}^* = 1$) esprime la natura vettoriale del campo elettrico, ma, essendo costante, non partecipa alla descrizione del fenomeno ondulatorio.

Dall'analisi delle funzioni d'onda sappiamo che il termine scalare che moltiplica \vec{p} nell'espressione di \vec{E} rappresenta un'onda piana il cui vettore d'onda $\vec{\beta}$ (costante in tutto lo spazio) coincide con la parte immaginaria di $\vec{\gamma}$, le superfici equi-fase sono piani perpendicolari a $\vec{\beta}$, la velocità di fase è $v = \omega/\beta$ e la lunghezza d'onda è $\lambda = 2\pi/\beta = v/f$.

Ci basta solo trovare sotto quali condizioni l'espressione proposta soddisfa le equazioni di Maxwell, che nei mezzi di cui ci occupiamo e in assenza di correnti impresse, assumono la forma ¹

$$\nabla \times \vec{E} = -j\omega\mu \vec{H}$$

$$\nabla \times \vec{H} = j\omega\epsilon \vec{E}$$

Dalla prima equazione, calcolando il rotore di $\vec{E}^{\ 2}$ si ottiene:

$$\vec{H} = \frac{\vec{\gamma} \times \vec{E}}{j\omega\mu} = \frac{F}{j\omega\mu} e^{-\vec{\gamma} \cdot \vec{r}} \vec{\gamma} \times \vec{p}$$

si nota che l'espressione di \vec{H} è simile a quella di \vec{E} : al posto della costante complessa F c'è $F/(j\omega\mu)$ che è un'altra costante complessa e al posto di \vec{p} c'è $\vec{\gamma} \times \vec{p}$ che è ancora un vettore costante. Pertanto, in modo analogo, si trova che $\nabla \times \vec{H} = -\vec{\gamma} \times \vec{H}$. Ponendo

$$\vec{E} = \frac{\nabla \times \vec{H}}{j\omega\epsilon} = -\frac{\vec{\gamma} \times \vec{H}}{j\omega\epsilon}$$

si ottiene

$$F e^{-\vec{\gamma} \cdot \vec{r}} \vec{p} = \frac{F}{\omega^2 \epsilon \, \mu} e^{-\vec{\gamma} \cdot \vec{r}} \vec{\gamma} \times (\vec{\gamma} \times \vec{p})$$

affinché siano verificate le equazioni di Maxwell è necessario quindi che

$$\vec{\gamma} \times (\vec{\gamma} \times \vec{p}) = k^2 \vec{p}$$

dove, come d'uso, si è posto $k^2 = \omega^2 \epsilon \mu$. La relazione precedente impone

$$\vec{p} \cdot \vec{\gamma} = 0 \tag{1}$$

$$\vec{\gamma} \cdot \vec{\gamma} = -k^2 \tag{2}$$

Avendo assunto che la densità di corrente impressa (e quindi anche di carica) sia nulla, le due equazioni alle divergenze risultano implicite nelle equazioni riportate

dall'identità (B27) [1], risulta

$$\nabla \times \vec{E} = F e^{-\vec{\gamma} \cdot \vec{r}} \nabla \times \vec{p} + (\nabla F e^{-\vec{\gamma} \cdot \vec{r}}) \times \vec{p}$$

ma $\nabla \times \vec{p} = 0$, essendo \vec{p} costante, mentre il gradiente del fattore scalare è $-F e^{-\vec{\gamma} \cdot \vec{r}} \vec{\gamma}$. Risulta pertanto

$$\nabla \times \vec{E} = -F e^{-\vec{\gamma} \cdot \vec{r}} \vec{\gamma} \times \vec{p} = -\vec{\gamma} \times \vec{E}$$

infatti $\vec{\gamma} \times (\vec{\gamma} \times \vec{p})$ è ortogonale a $\vec{\gamma}$ ³ e, per poter essere uguale a $k^2 \vec{p}$, è necessario che anche \vec{p} lo sia $(\vec{p} \cdot \vec{\gamma} = 0)$. Dallo sviluppo del doppio prodotto vettoriale (identità (B13) [1])

$$\vec{\gamma} \times (\vec{\gamma} \times \vec{p}) = \vec{\gamma} \, (\underbrace{\vec{\gamma} \cdot \vec{p}}_{\text{\tiny Term}}) - \vec{p} \, (\vec{\gamma} \cdot \vec{\gamma} \,)$$

si deduce immediatamente la seconda condizione indipendente da \vec{p} .

Se nel termine esponenziale si mettono in evidenza la parte reale e immaginaria di $\vec{\gamma}$ si vede che possono verificarsi due situazioni diverse:

- la parte reale e immaginaria di $\vec{\gamma}$ sono parallele: $\vec{\gamma} = \vec{u} (\alpha + j\beta)$ dove \vec{u} è un versore reale e α e $\beta = |\vec{\beta}|$ sono quantità reali. In questo caso le superfici equi-fase sono anche superfici equi-ampiezza e le onde piane vengono chiamate *uniformi*.
- la parte reale e immaginaria di $\vec{\gamma}$ non sono parallele: $\vec{\gamma} = \vec{\alpha} + j\vec{\beta}$ dove $\vec{\alpha}$ e $\vec{\beta}$ sono vettori reali non paralleli. In questo caso su ogni piano equifase il campo decresce esponenzialmente nella direzione della proiezione di $\vec{\alpha}$ sul piano e le onde piane vengono chiamate *evanescenti*.

Come si vedrà in molti casi pratici è possible approssimare i campi elettromagnetici come onde piane uniformi (o somma di onde piane uniformi). In qualche caso sarà necessario descrivere il campo elettromagnetico anche con onde evanescenti.

Onde piane uniformi

Nelle onde piane uniformi, essendo

$$\vec{\gamma} = \gamma \, \vec{u} \qquad \qquad \gamma = \alpha + j\beta$$

le condizioni (1) e (2) diventano

$$\vec{p} \cdot \vec{u} = 0$$

$$\gamma = j k$$

la prima dice che la polarizzazione del campo elettrico può essere qualunque, purché sia sul piano perpendicolare alla direzione di propagazione, dalla seconda si deduce

$$\alpha = -\operatorname{Im}(k) = \omega \sqrt{|\epsilon \mu|} \sin \frac{1}{2} (\theta_e + \theta_m)$$
$$\beta = \operatorname{Re}(k) = \omega \sqrt{|\epsilon \mu|} \cos \frac{1}{2} (\theta_e + \theta_m)$$

e le espressioni di \vec{E} e \vec{H} e del vettore di Poynting diventano

$$\begin{array}{rcl} \vec{E} &=& \eta \, \vec{H} \times \vec{u} &=& F \, e^{-(\alpha + j\beta) \vec{u} \cdot \vec{r}} \, \vec{p} \\ \\ \vec{H} &=& \frac{\vec{u} \times \vec{E}}{\eta} &=& \frac{F}{\eta} \, e^{-(\alpha + j\beta) \vec{u} \cdot \vec{r}} \vec{u} \times \vec{p} \\ \\ \vec{S} &=& \frac{\vec{E} \times \vec{H}^*}{2} &=& \vec{u} \, \frac{|\vec{E}|^2}{2 \, \eta^*} &=& \vec{u} \, \eta \, \frac{|\vec{H}|^2}{2} \\ \\ \text{dove} &&& \\ \\ \eta &=& \frac{\omega \mu}{k} = \frac{k}{\omega \epsilon} = \sqrt{\frac{\mu}{\epsilon}} = \sqrt{|\mu / \epsilon|} \, e^{j \frac{1}{2} (\theta_e - \theta_m)} \end{array}$$

si nota che risultano ortogonali alla direzione di propagazione \vec{u} (al vettore d'onda $\vec{\beta}$) sia il campo elettrico ($\vec{p} \cdot \vec{u} = 0$) sia il campo magnetico ($\vec{u} \times \vec{p} \cdot \vec{u} = 0$), per questo motivo l'onda si dice *trasversale* elettro-magnetica (TEM).

è ben noto che se \vec{a} e \vec{b} sono due vettori reali, il loro prodotto vettoriale $\vec{a} \times \vec{b}$ è perpendicolare ad entrambi $\vec{a} \times \vec{b} \cdot \vec{a} = 0$, $\vec{a} \times \vec{b} \cdot \vec{b} = 0$. Si verifica immediatamente che questa proprietà continua a valere anche se i vettori \vec{a} e \vec{b} sono complessi

Onde piane evanescenti

Nelle onde piane evanescenti, essendo $\vec{\gamma} = \vec{\alpha} + j\vec{\beta}$ con $\vec{\alpha}$ e $\vec{\beta}$ vettori reali non paralleli, la condizione (1) ha due soluzioni fondamentali:

$$\begin{array}{ll} \vec{p}_{\perp} & = & \dfrac{\vec{\alpha} \times \vec{\beta}}{\mid \vec{\alpha} \times \vec{\beta} \mid} \\ \vec{p}_{\parallel} & = & \dfrac{\vec{\gamma} \times \vec{p}_{\perp}}{\mid \vec{\gamma} \mid} \end{array}$$

la prima rappresenta una polarizzazione lineare in direzione perpendicolare sia ad $\vec{\alpha}$ che a $\vec{\beta}$ (per cui $\vec{p}_{\perp} \cdot \vec{\gamma} = 0$), la seconda rappresenta una polarizzazione ellittica giacente sul piano individuato dai vettori $\vec{\alpha}$ e $\vec{\beta}$ e ortogonale a $\vec{\gamma}$ ($p_{\parallel} \cdot \vec{\gamma} = 0$) per la proprietà del prodotto misto ($\vec{\gamma} \times \vec{p}_{\perp} \cdot \vec{\gamma} = 0$).

Ovviamente qualunque polarizzazione ottenuta come combinazione lineare, anche con coefficienti complessi, di \vec{p}_{\perp} e \vec{p}_{\parallel} soddisfa ancora la condizione (1).

La condizione (2) impone invece

$$|\vec{\beta}|^2 - |\vec{\alpha}|^2 = \operatorname{Re}(k^2)$$
 $2\vec{\alpha} \cdot \vec{\beta} = -\operatorname{Im}(k^2)$

Assumendo che la polarizzazione di \vec{E} sia \vec{p}_{\perp} oppure \vec{p}_{\parallel} e usando le relazioni generali, si trovano le seguenti espressioni per i campi \vec{E} e \vec{H} e per il vettore di Poynting: ⁴

$$\begin{split} \vec{E} &= F \, e^{-\vec{\gamma} \cdot \vec{r}} \, \vec{p}_{\perp} \\ \vec{H} &= \frac{\vec{\gamma} \times \vec{E}}{j\omega\mu} = \frac{|\vec{\gamma}|}{jk} \frac{F \, e^{-\vec{\gamma} \cdot \vec{r}}}{\eta} \, \vec{p}_{\parallel} \\ \vec{S} &= \frac{\vec{E} \times (\vec{\gamma} \times \vec{E})^*}{2(j\omega\mu)^*} = -\frac{\vec{\gamma}^*}{jk^*} \frac{|\vec{E}|^2}{2\,\eta^*} \\ &= -\frac{\vec{\gamma}^*}{jk^*} \frac{|F|^2 e^{-2\vec{\alpha} \cdot \vec{r}}}{2\,\eta^*} \end{split}$$

$$\vec{E} &= F \, e^{-\vec{\gamma} \cdot \vec{r}} \, \vec{p}_{\parallel} = -\frac{\vec{\gamma} \times \vec{H}}{j\omega\epsilon} \\ \vec{H} &= \frac{\vec{\gamma} \times \vec{E}}{j\omega\mu} = -\frac{jk}{|\vec{\gamma}|} \frac{F \, e^{-\vec{\gamma} \cdot \vec{r}}}{\eta} \, \vec{p}_{\perp} \\ \vec{S} &= -\frac{(\vec{\gamma} \times \vec{H}) \times \vec{H}^*}{2(j\omega\epsilon)} = \frac{\vec{\gamma}}{jk} \frac{\eta \, |\vec{H}|^2}{2} \\ &= \frac{\vec{\gamma} \, k^*}{j \, |\vec{\gamma}|^2} \frac{|F|^2 e^{-2\vec{\alpha} \cdot \vec{r}}}{2\,\eta^*} \end{split}$$

si nota che nel primo caso il campo elettrico è trasversale rispetto alla direzione di propagazione (direzione di $\vec{\beta}$) ma non \vec{H} , dato che \vec{p}_{\parallel} , essendo ortogonale a $\vec{\gamma}$ e complanare ad esso, ha necessariamente una componente secondo $\vec{\beta}$: in questo caso l'onda è definita *trasversale elettrica* (TE). Viceversa, nel secondo caso è il campo elettrico ad avere una componente nella direzione di propagazione mentre il campo magnetico è trasversale ad essa: in questo caso l'onda è definita *trasversale magnetica* (TM).

[1] G. Conciauro, L. Perregrini: Fondamenti di onde elettromagnetiche, McGraw-Hill, Milano, 2003.