Radiazione da aperture

Consideriamo il problema di determinare il campo elettromagnetico nel semispazio z > 0 sostenuto da sorgenti poste nel semispazio z < 0, quando sul piano z = 0 è presente uno schermo piano, perfettamente conduttore, che permette l'accoppiamento dei campi elettromagnetici tra i due semispazi solo attraverso un'apertura di dimensioni finite. Supponiamo che il mezzo, nel semispazio d'interesse, sia omogeneo, isotropo e senza perdite e supponiamo di conoscere l'**illuminazione** dell'apertura, cioé il campo elettrico tangenziale \vec{E}_0 presente sull'apertura.

Così com'è stato formulato, il problema è un problema di "condizioni al contorno" che ammette un'unica soluzione, dato che l'assegnazione del campo elettrico tangente in una parte del piano z = 0, la condizione di parete elettrica nella parte rimanente del piano e la condizione di radiazione sulla semisuperficie sferica all'infinito del semispazio z > 0 sono condizioni che assicurano l'unicità della soluzione.

Per trovare la soluzione di questo problema è conveniente considerare un problema equivalente: dapprima si possono cambiare le condizioni al contorno da disomogenee in omogenee introducendo una lamina di corrente magnetica impressa. Infatti imporre la condizione al contorno $\vec{n} \times \vec{E} = \vec{n} \times \vec{E}_{o}$ sull'apertura è equivalente ad imporre la condizione di parete elettrica $\vec{n} \times \vec{E} = 0$ su tutto il piano z = 0, estendendo la presenza del conduttore perfetto anche sull'apertura, e imporre il valore \vec{E}_{o} immediatamente sopra l'apertura introducendo la lamina di densità di corrente magnetica superficiale $\vec{M}_s = \vec{E}_o \times \vec{n}$ che comporta la discontinuità della componente tangente del campo elettrico da zero, sul piano conduttore, a \vec{E}_o immediatamente al di là della lamina.

Infine è possibile trasformare quest'ultimo problema in un problema di radiazione nello spazio infinito, sfruttando la regola delle immagini. Infatti, su tutto il piano z = 0 è verificata la condizione di parete elettrica $\vec{n} \times \vec{E} = 0$ per la presenza del conduttore perfetto, possiamo rimuovere il conduttore perfetto e imporre la stessa condizione imponendo che il campo elettrico

 \vec{E}_{o} $\vec{n} \times \vec{E} = 0$ $\vec{n} \times \vec{E} = 0$ $\vec{n} \times \vec{E} = 0$ $\vec{M}_{s} \neq \vec{M}_{s}$ $\vec{M}_{s} = \vec{E}_{o} \times \vec{n}$ piano di simmetria dispari per \vec{E} e pari per $\vec{H} \in \vec{M}$

abbia simmetria dispari rispetto al piano z = 0 e che quindi il campo magnetico e la densità di corrente magnetica abbiano simmetria pari rispetto allo stesso piano.

Dato che la densità di corrente superficiale $\vec{M_s}$ e la sua immagine a simmetria pari coincidono, la soluzione del problema richiede di calcolare il campo di radiazione dovuto alla distribuzione di corrente magnetica superficiale $2\vec{M_s} = 2\vec{E_o} \times \vec{u_z}$ localizzata sull'apertura. Il calcolo di tale campo è immediato sfruttando le relazioni di dualità riportate nella tabella in appendice.

Campo di radiazione di un'apertura rettangolare illuminata uniformemente

Consideriamo un'apertura rettangolare di dimensioni a, b posta sul piano xy e supponiamo che l'illuminazione dell'apertura sia d'intensità uniforme pari a E_0 , in fase e polarizzata lungo l'asse y:

$$2\,\vec{M}_s = 2\,\vec{E}_o\times\vec{u}_z = 2\,E_o\,\vec{u}_z$$

Sovrapposto al sistema di coordinate cartesiane $\{x, y, z\}$, per rappresentare i campi di radiazione consideriamo il sistema di coordinate sferiche $\{r, \vartheta, \varphi\}$ $(0 \le \vartheta \le \pi/2, -\pi < \varphi \le \pi)$ con asse polare coincidente con l'asse z. Risulta:

$$\vec{r}' = \vec{u}_x x' + \vec{u}_y y'$$
 $\vec{u}_r = \vec{u}_x \sin \vartheta \cos \varphi + \vec{u}_y \sin \vartheta \sin \varphi + \vec{u}_z \cos \vartheta$

ponendo

 $\begin{array}{ll} u \ = \ \vec{u}_r \cdot \vec{u}_x \ = \ \sin \vartheta \cos \varphi \\ v \ = \ \vec{u}_r \cdot \vec{u}_y \ = \ \sin \vartheta \sin \varphi \end{array} \qquad \qquad (u^2 + v^2 \le 1 \,) \end{array}$

il vettore di radiazione relativo alla densità di corrente magnetica risulta

$$\begin{aligned} \vec{L} &= 2 E_{o} \vec{u}_{x} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} e^{jk(ux'+vy')} dx' dy' \\ &= 2 a b E_{o} \vec{u}_{x} \operatorname{sinc}(\pi a u/\lambda) \operatorname{sinc}(\pi b v/\lambda) \qquad \operatorname{sinc}(\xi) = \frac{\sin \xi}{\xi} \end{aligned}$$

da cui risulta¹:

$$\begin{split} \vec{E} &= j \, ab \, E_{\mathrm{o}} \, \frac{e^{-jkr}}{\lambda \, r} \left(\vec{u}_{\varphi} \cos \vartheta \cos \varphi + \vec{u}_{\vartheta} \sin \varphi \right) \operatorname{sinc}(\pi \, a \, u/\lambda) \, \operatorname{sinc}(\pi \, b \, v/\lambda) \\ \vec{H} &= -j \, ab \, \frac{E_{\mathrm{o}}}{\eta} \frac{e^{-jkr}}{\lambda \, r} \left(\vec{u}_{\vartheta} \cos \vartheta \cos \varphi - \vec{u}_{\varphi} \sin \varphi \right) \operatorname{sinc}(\pi \, a \, u/\lambda) \, \operatorname{sinc}(\pi \, b \, v/\lambda) \\ K &= \frac{a^2 \, b^2}{\lambda^2} \, \frac{|E_{\mathrm{o}}|^2}{2 \, \eta} \left(1 - u^2 \right) \operatorname{sinc}^2(\pi \, a \, u/\lambda) \, \operatorname{sinc}^2(\pi \, b \, v/\lambda) \end{split}$$

Dall'espressione di \vec{E} , si vede che il campo elettrico è polarizzato linearmente. Dalla sua espressione generale si deduce immediatamente che la polarizzazione del campo elettrico, perpendicolare alla direzione di propagazione e perpendicolare alla direzione \vec{u}_x , è secondo i paralleli della sfera che ha come asse polare l'asse x, la polarizzazione del campo magnetico, perpendicolare alla direzione e al campo elettrico è secondo i meridiani della stessa sfera.

L'andamento della funzione $\operatorname{sinc}^2(x)$ è riportato in figura, il suo valore massimo è 1 per x = 0. Pertanto il valore della massima intensità di radiazione si per u = v = 0, cioé nella direzione dell'asse z e vale

$$K_{\rm max} = \frac{a^2 b^2}{\lambda^2} \frac{|E_{\rm o}|^2}{2 \eta}$$

essendo $\vec{u}_x = \vec{u}_r \sin \vartheta \cos \varphi + \vec{u}_\vartheta \cos \vartheta \cos \varphi - \vec{u}_\varphi \sin \varphi$, risulta

$$\begin{array}{ll} \vec{u}_r \times \vec{u}_x &= \vec{u}_\varphi \cos \vartheta \cos \varphi + \vec{u}_\vartheta \sin \varphi \\ \vec{u}_x - \vec{u}_r \, \vec{u}_r \cdot \vec{u}_x &= \vec{u}_\vartheta \cos \vartheta \cos \varphi - \vec{u}_\varphi \sin \varphi \\ | \vec{u}_r \times \vec{u}_x |^2 &= \cos^2 \vartheta \cos^2 \varphi + \sin^2 \varphi &= (1 - \sin^2 \vartheta) \cos^2 \varphi + \sin^2 \varphi = 1 - u^2 \end{array}$$

I diagrammi di radiazione dell'apertura sono pertanto diagrammi della funzione

$$\frac{K(u,v)}{K_{\max}} = (1 - u^2) \operatorname{sinc}^2(\pi \, a \, u/\lambda) \operatorname{sinc}^2(\pi \, b \, v/\lambda) \qquad u^2 + v^2 \le 1$$

È evidente che, indipendentemente dalle dimensioni dell'apertura si ha uno zero di radiazione per $u = \pm 1$, cioé in direzione dell'asse x, nel verso positivo e negativo.

Dato che u e v sono in modulo non superiori a 1, gli argomenti delle funzioni sinc² sono compresi tra

$$-\xi_a \leq \pi a u/\lambda \leq \xi_a = \pi a/\lambda$$
$$-\xi_b \leq \pi b v/\lambda \leq \xi_b = \pi b/\lambda$$

Se le dimensioni dell'apertura sono molto piccole rispetto alla lunghezza d'onda $(a, b \ll \lambda) \quad \xi_a$ e ξ_b sono molto piccoli rispetto a π e il valore

di sinc²(ξ) non è molto diverso da 1. Questo implica che il diagramma di radiazione dell'apertura è praticamente uguale a $\cos^2 \vartheta$ sul piano xz e praticamente costante sul piano yz.

diagrammi di radiazione (scala lineare) di un'apertura illuminata uniformemente di dimensioni $a = 2b = \lambda/2$

Al contrario, se le dimensioni dell'apertura sono molto grandi rispetto alla lunghezza d'onda, ξ_a e ξ_b sono molto grandi rispetto a π e negli intervalli $-\xi_a$, ξ_a , $-\xi_b$, ξ_b sono compresi diversi zeri e diversi massimi della funzione sinc². Oltre al lobo principale nella direzione dell'asse z, il diagramma di radiazione presenta molti altri lobi, di intensità massima via via decrescente all'aumentare dell'angolo ϑ tra la direzione del lobo e l'asse z. Le direzioni di zero di radiazione sono quelle per cui

$$\pi a u/\lambda = m \pi$$
 $\pi b v/\lambda = n \pi$ m, n interi diversi da 0

Le direzioni di zero che delimitano il lobo principale nel piano xz sono individuate da $u = \pm \lambda/a$, e l'angolo compreso tra queste due direzioni, cioè l'apertura angolare Δ_{xz} del lobo principale è data da

$$\Delta_{xz} = 2 \arcsin \lambda/a \approx 2 \lambda/a$$

In modo analogo si trova che l'apertura angolare Δ_{yz} del lobo principale sul piano yz è

$$\Delta_{uz} = 2 \arcsin \lambda/b \approx 2 \lambda/b$$

diagrammi di radiazione (dB) di un'apertura illuminata uniformemente di dimensioni $a = 2b = 10 \lambda$

Alcuni aspetti dei risultati ottenuti nel caso considerato hanno in realtà validità molto più generale. Il primo riguarda il fatto che abbiamo trovato che il massimo di radiazione è nella direzione dell'asse z. In realtà, qualunque sia la forma dell'apertura e qualunque sia la sua legge d'illuminazione d'ampiezza, se il campo sull'apertura ha fase costante, il massimo di radiazione è nella direzione perpendicolare al piano dell'apertura.

La spiegazione è abbastanza intuitiva se si considerano i contributi al campo di radiazione dati dai singoli elementi infinitesimi di cui si compone la sorgente $\vec{M}_s(x', y') dx' dy'$. Infatti, se tali elementi di sorgente sono tutti in fase, i campi da essi prodotti si sommano in fase nei punti in cui i ritardi di fase dovuti alla propagazione sono uguali, cioè nei punti che hanno la stessa distanza da tutti gli elementi della sorgente e questo avviene proprio nei i punti a grande distanza dall'apertura, nella direzione perpendicolare all'apertura stessa.

Il secondo aspetto è relativo al fatto che abbiamo trovato che ad un'apertura di dimensioni a, b piccole rispetto alla lunghezza d'onda corrisponde un diagramma di radiazione ampio, mentre a un'apertura di grandi dimensioni corrisponde un diagramma di radiazione con un lobo principale molto stretto. Questo è un risultato, del tutto generale, che deriva dalla legge che collega la "forma" dei campi di radiazione alla "forma" della sorgente. Tale legame è dato dall'espressione del vettore di radiazione:

$$ec{L}(artheta, arphi) = 2 \int \int \limits_{ ext{apertura}} e^{j \, k \, (u \, x' + v \, y')} \, ec{M_s}(x', y') \, dx' \, dy'$$

Infatti, se estendiamo la definizione della densità di corrente magnetica superficiale a tutto il piano dell'apertura, ponendo che essa è nulla al di fuori dell'apertura, possiamo riscrivere l'espressione di \vec{L} nella forma

$$\vec{L}(\vartheta,\varphi) = 2 \iint_{-\infty}^{\infty} e^{-j(\xi x' + \eta y')} \vec{M}_s(x',y') dx' dy' \qquad \qquad \xi = -k u \\ \eta = -k v$$

è evidente che il vettore di radiazione è proporzionale alla trasformata di Fourier bidimensionale della sorgente, dove $\xi \in \eta$ sono le "variabili spettrali" associate alle variabili "spaziali" $x' \in y'$. I campi nella zona di radiazione e l'intensità di radiazione dipendono dalla parte dello spettro della sorgente interna al cerchio di raggio k, detto cerchio di visibilità². La proprietà riscontrata nel caso specifico dell'apertura rettangolare è in realtà una proprietà generale della trasformata di Fourier.

la condizione sui coseni direttori $u^2 + v^2 \le 1$ implica la condizione sulle variabili spettrali $\xi^2 + \eta^2 \le k^2$.

sorgenti elettriche	sorgenti magnetiche
$ abla imes ec{E} = -j\omega\muec{H}$	$ abla imes ec{H} = j\omega\epsilonec{E}$
$ abla imes ec{H} = j\omega\epsilonec{E} + ec{J_{ m o}}$	$- abla imes ec E$ = $j\omega\muec H +ec M_{ m o}$
$ec{E} = -j\omega \Big(ec{A} + rac{1}{k^2} \nabla abla \cdot ec{A} \Big)$	$ec{H} = -j\omega \Big(ec{F} + rac{1}{k^2} \nabla abla \cdot ec{F} \Big)$
$ec{H} = rac{1}{\mu} abla imes ec{A}$	$ec{E} = -rac{1}{\epsilon} abla imes ec{F}$
$\vec{A} = \mu \int_{V} \frac{e^{-jkR}}{4\pi R} \vec{J_{o}}(\vec{r}') dV'$	$ec{F}$ = $\epsilon \int_V rac{e^{-jkR}}{4 \pi R} ec{M_{ m o}}(ec{r}') dV'$
nell'approssimazione di campo lontano	
$ec{A} = \mu rac{e^{-jkr}}{4 \pi r} ec{N}$	$ec{F} = \epsilon rac{e^{-jkr}}{4 \pi r} ec{L}$
$ec{N} = \int_V e^{jkec{u}_r\cdotec{r}'} ec{J_{ m o}}(ec{r}') dV'$	$ec{L} = \int_V e^{jkec{u}_r\cdotec{r}'} ec{M_{ m o}}(ec{r}') dV'$
$\vec{E} = -j\eta \frac{e^{-jkr}}{2\lambda r} \left(\vec{N} - \vec{u}_r \left(\vec{u}_r \cdot \vec{N} \right) \right)$	$ec{H} = -rac{j}{\eta} rac{e^{-jkr}}{2\lambdar} \left(ec{L} - ec{u}_r \Big(ec{u}_r \cdot ec{L}\Big) ight)$
$ec{H} = -j rac{e^{-jkr}}{2 \lambda r} ec{u}_r imes ec{N}$	$ec{E} = j \; rac{e^{-jkr}}{2 \lambda r} \; ec{u}_r imes ec{L}$
$K = \frac{\eta}{8 \lambda^2} \left(\vec{N} ^2 - \vec{u}_r \cdot \vec{N} ^2 \right)$	$K = \frac{1}{8 \eta \lambda^2} \left(\vec{L} ^2 - \vec{u}_r \cdot \vec{L} ^2 \right)$
$ec{H} = rac{ec{u}_r imes ec{E}}{\eta} \qquad ec{E} = \eta ec{H} imes ec{u}_r$	
$K = \frac{ \vec{E} ^2}{2\eta} r^2 = \frac{\eta \vec{H} ^2}{2} r^2$	

relazioni di dualità