

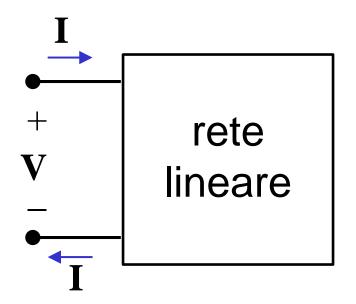
Corso di Laurea Triennale in Ingegneria Elettronica e Informatica

Circuiti Elettrici Lineari Reti biporta

Sommario

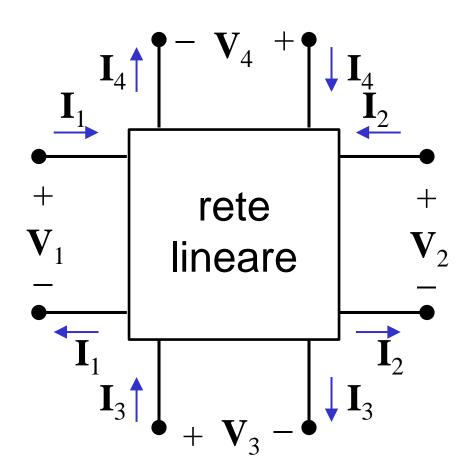
- Definizione
- Parametri di impedenza
- Parametri di ammettenza
- Parametri ibridi
- Parametri di trasmissione
- Relazioni fra i diversi parametri
- Interconnessione di quadrupoli: in serie, in parallelo, in cascata

Rete monoporta o bipolo:



Una porta è costituita da una coppia di terminali dai quali entra ed esce la stessa corrente

Rete multiporta:



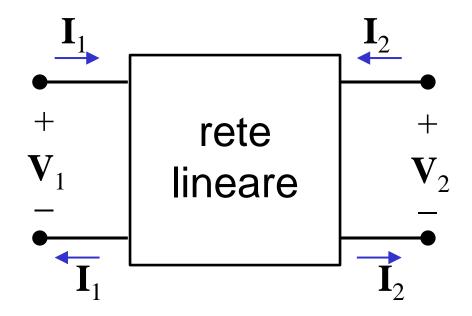
Una rete multiporta può essere trattata come una scatola nera, purché si conoscano le relazioni fra le grandezze (tensioni e correnti) ai suoi terminali

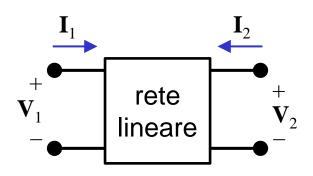
In altri termini, non è necessario conoscere la struttura interna del circuito che costituisce la rete, purché siano noti i legami fra le varie grandezze accessibili alle porte

Il legame fra tensioni e correnti viene solitamente rappresentato attraverso matrici che coinvolgono diversi tipi di parametri:

- parametri di impedenza
- parametri di ammettenza
- parametri ibridi
- parametri di trasmissione

Tratteremo il caso specifico di una rete biporta, comunemente detta doppio bipolo o quadrupolo:





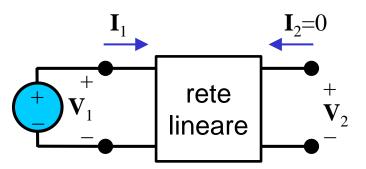
$$\mathbf{V}_1 = \mathbf{z}_{11}\mathbf{I}_1 + \mathbf{z}_{12}\mathbf{I}_2$$
$$\mathbf{V}_2 = \mathbf{z}_{21}\mathbf{I}_1 + \mathbf{z}_{22}\mathbf{I}_2$$

In forma matriciale:

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = [\mathbf{z}] \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

I coefficienti della matrice [z] sono detti parametri d'impedenza o parametri z e sono espressi in Ω .

I valori dei parametri d'impedenza si ricavano considerando \mathbf{I}_1 =0 oppure \mathbf{I}_2 =0 :



$$\mathbf{Z}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \bigg|_{\mathbf{I}_2 = 0}$$

$$\mathbf{Z}_{21} = \frac{\mathbf{V}_2}{\mathbf{I}_1} \bigg|_{\mathbf{I}_2 = 0}$$

$$\begin{array}{c|c} \mathbf{I}_1 = 0 & \mathbf{I}_2 \\ \mathbf{V}_1 & \text{rete} \\ \mathbf{V}_2 & \mathbf{V}_2 \end{array}$$

$$\mathbf{Z}_{12} = \frac{\mathbf{V}_1}{\mathbf{I}_2} \bigg|_{\mathbf{I}_1 = 0}$$

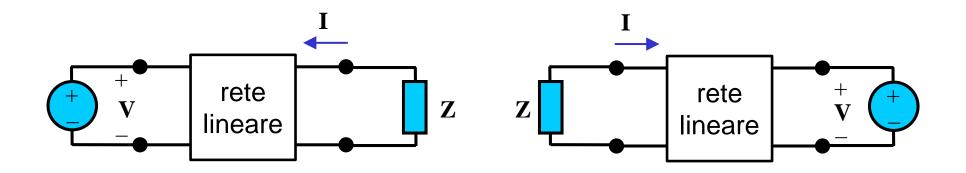
$$\mathbf{Z}_{22} = \frac{\mathbf{V}_2}{\mathbf{I}_2} \bigg|_{\mathbf{I}_1 = 0}$$

Con questa procedura si possono calcolare o misurare i parametri d'impedenza.

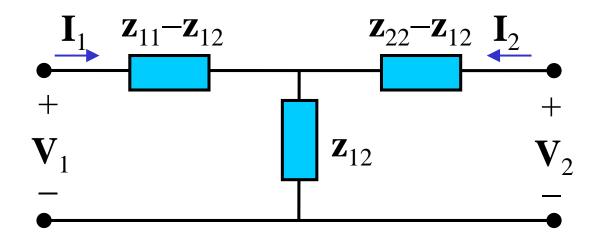
Se $\mathbf{z}_{11} = \mathbf{z}_{22}$ il quadrupolo si dice simmetrico e può essere rappresentato da un circuito simmetrico.

Se il quadrupolo è lineare e non contiene generatori dipendenti si ha $\mathbf{z}_{12} = \mathbf{z}_{21}$ e la rete si dice reciproca.

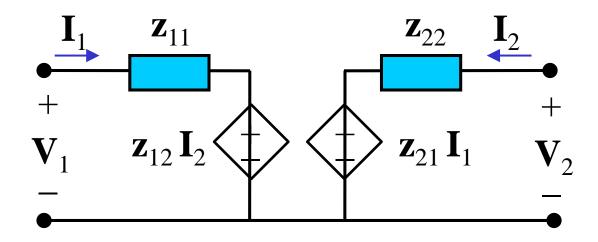
In questo caso, se eccitando la porta 1 con una tensione V si ottiene la corrente I sulla porta 2, allora eccitando la porta 2 con la stessa tensione V si ottiene lo stesso valore di corrente I sulla porta 1:



Un quadrupolo contenente solo resistori, induttori e condensatori è reciproco e può essere rappresentato con il seguente circuito a T:



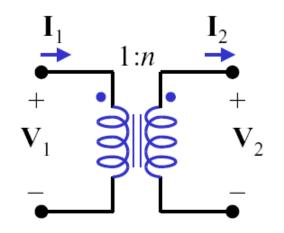
Più in generale, anche se il quadrupolo è non reciproco, il circuito equivalente è il seguente:



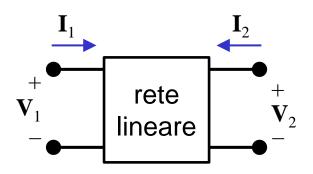
Si noti che non tutti i circuiti possono essere rappresentati attraverso i parametri d'impedenza.

Infatti, se si considera, ad esempio, il trasformatore ideale, si ha

$$\mathbf{V}_1 = \frac{1}{n} \mathbf{V}_2 \qquad \qquad \mathbf{I}_1 = n \mathbf{I}_2$$



ed è quindi impossibile esprimere le tensioni in funzione delle correnti.



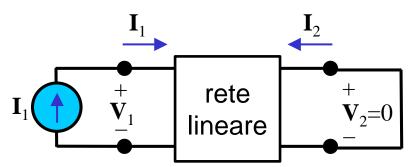
$$\mathbf{I}_1 = \mathbf{y}_{11}\mathbf{V}_1 + \mathbf{y}_{12}\mathbf{V}_2$$
$$\mathbf{I}_2 = \mathbf{y}_{21}\mathbf{V}_1 + \mathbf{y}_{22}\mathbf{V}_2$$

In forma matriciale:

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = [\mathbf{y}] \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

I coefficienti della matrice [y] sono detti parametri di ammettenza o parametri y e sono espressi in Siemens.

I valori dei parametri di ammettenza si ricavano considerando V_1 =0 oppure V_2 =0:



$$\mathbf{y}_{11} = \frac{\mathbf{I}_1}{\mathbf{V}_1} \bigg|_{\mathbf{V}_2 = 0}$$

$$\mathbf{y}_{21} = \frac{\mathbf{I}_2}{\mathbf{V}_1} \bigg|_{\mathbf{V}_2 = 0}$$

$$\begin{array}{c|c} \mathbf{I}_1 & \mathbf{I}_2 \\ \mathbf{V}_1 = 0 & \mathbf{V}_2 \\ \mathbf{I}_2 & \mathbf{V}_2 \\ \mathbf{I}_2 & \mathbf{I}_2 \\ \mathbf{I}_2 & \mathbf{I}_2 \\ \mathbf{I}_3 & \mathbf{I}_4 \\ \mathbf{I}_4 & \mathbf{I}_5 \\ \mathbf{I}_5 & \mathbf{I}_6 \\ \mathbf{I}_7 & \mathbf{I}_8 \\ \mathbf{I}_8 & \mathbf{I}_8 \\ \mathbf{I}_8 & \mathbf{I}_8 \\ \mathbf{I}_8 & \mathbf{I}_8 \\ \mathbf{I}_9 & \mathbf{I}_9 \\ \mathbf{I}_{10} & \mathbf{I}_{10} \\$$

$$\mathbf{y}_{12} = \frac{\mathbf{I}_1}{\mathbf{V}_2} \bigg|_{\mathbf{V}_1 = 0}$$

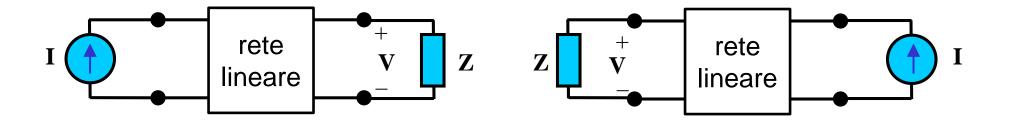
$$\mathbf{y}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \bigg|_{\mathbf{V}_1 = 0}$$

Con questa procedura si possono calcolare o misurare i parametri di ammettenza.

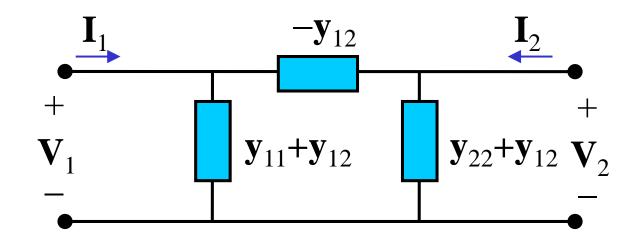
Se $y_{11}=y_{22}$ il quadrupolo si dice simmetrico e può essere rappresentato da un circuito simmetrico.

Se il quadrupolo è lineare e non contiene generatori dipendenti si ha $\mathbf{y}_{12} = \mathbf{y}_{21}$ e la rete si dice reciproca.

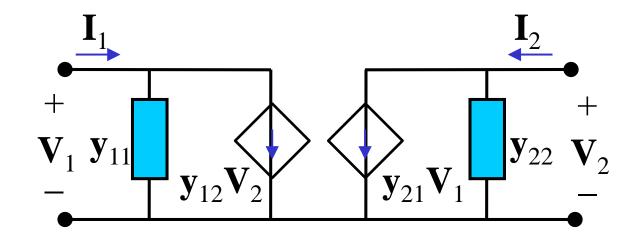
In questo caso, se eccitando la porta 1 con una corrente \mathbf{I} si ottiene la tensione \mathbf{V} sulla porta 2, allora eccitando la porta 2 con la stessa corrente \mathbf{I} si ottiene lo stesso valore di tensione \mathbf{V} sulla porta 1:



Un quadrupolo contenente solo resistori, induttori e condensatori è reciproco e può essere rappresentato con il seguente circuito a Π :



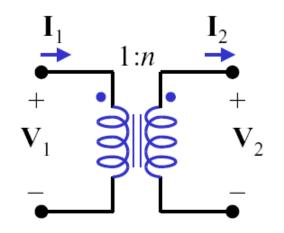
Più in generale, se il quadrupolo è non reciproco, il circuito equivalente è il seguente:



Si noti che non tutti i circuiti possono essere rappresentati attraverso i parametri di ammettenza.

Infatti, se si considera, anche in questo caso il trasformatore ideale, si ha

$$\mathbf{V}_1 = \frac{1}{n} \mathbf{V}_2 \qquad \qquad \mathbf{I}_1 = n \mathbf{I}_2$$



ed è quindi impossibile esprimere le correnti in funzione delle tensioni.

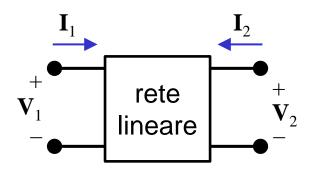
I parametri di impedenza e ammettenza vengono anche indicati come parametri di immittenza.

Poiché

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = [\mathbf{z}] \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = [\mathbf{y}] \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

si ha

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = [\mathbf{z}] \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = [\mathbf{z}] [\mathbf{y}] \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} \implies [\mathbf{y}] = [\mathbf{z}]^{-1}$$



$$\mathbf{V}_1 = \mathbf{h}_{11}\mathbf{I}_1 + \mathbf{h}_{12}\mathbf{V}_2$$

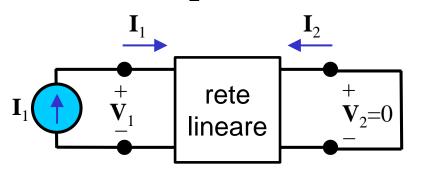
 $\mathbf{I}_2 = \mathbf{h}_{21}\mathbf{I}_1 + \mathbf{h}_{22}\mathbf{V}_2$

In forma matriciale:

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} = [\mathbf{h}] \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

I coefficienti della matrice [h] sono detti parametri ibridi o parametri h.

I valori dei parametri ibridi si ricavano considerando \mathbf{I}_1 =0 oppure \mathbf{V}_2 =0 :



$$\mathbf{h}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \bigg|_{\mathbf{V}_2 = 0}$$

$$\mathbf{h}_{21} = \frac{\mathbf{I}_2}{\mathbf{I}_1} \bigg|_{\mathbf{V}_2 = 0}$$

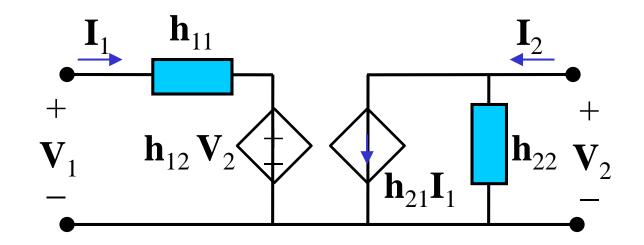
$$\begin{array}{c|c} \mathbf{I}_1 = 0 & \mathbf{I}_2 \\ \mathbf{V}_1 & \text{rete} \\ \mathbf{V}_2 & \mathbf{V}_2 \end{array}$$

$$\mathbf{h}_{12} = \frac{\mathbf{V}_1}{\mathbf{V}_2} \bigg|_{\mathbf{I}_1 = 0}$$

$$\mathbf{h}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \bigg|_{\mathbf{I}_1 = 0}$$

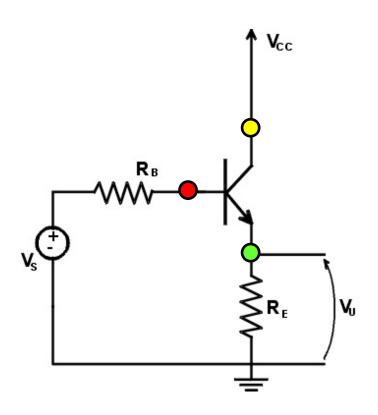
Con questa procedura si possono calcolare o misurare i parametri ibridi.

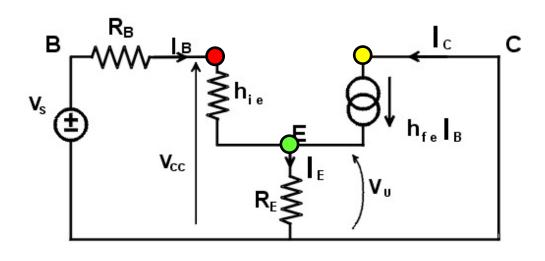
In generale, anche se il quadrupolo è non reciproco, il circuito equivalente è il seguente:



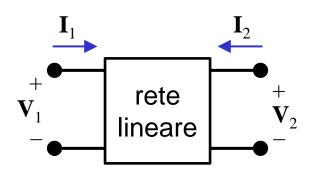
Se il quadrupolo è reciproco si ha $\mathbf{h}_{12} = -\mathbf{h}_{21}$.

Esempio:





Parametri ibridi inversi



$$\mathbf{I}_{1} = \mathbf{g}_{11}\mathbf{V}_{1} + \mathbf{g}_{12}\mathbf{I}_{2}$$

 $\mathbf{V}_{2} = \mathbf{g}_{21}\mathbf{V}_{1} + \mathbf{g}_{22}\mathbf{I}_{2}$

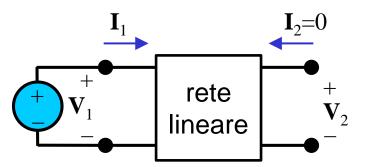
In forma matriciale:

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{g}_{11} & \mathbf{g}_{12} \\ \mathbf{g}_{21} & \mathbf{g}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = [\mathbf{g}] \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

I coefficienti della matrice [g] sono detti parametri ibridi inversi o parametri g.

Parametri ibridi inversi

I valori dei parametri ibridi inversi si ricavano considerando \mathbf{V}_1 =0 oppure \mathbf{I}_2 =0:



$$\left. \mathbf{g}_{11} = \frac{\mathbf{I}_1}{\mathbf{V}_1} \right|_{\mathbf{I}_2 = 0}$$

$$\mathbf{g}_{21} = \frac{\mathbf{V}_2}{\mathbf{V}_1} \bigg|_{\mathbf{I}_2 = 0}$$

$$\begin{array}{c|c} \mathbf{I}_1 & \mathbf{I}_2 \\ \mathbf{V}_1 = 0 & \mathbf{V}_2 \\ \mathbf{I}_2 & \mathbf{V}_2 \end{array}$$

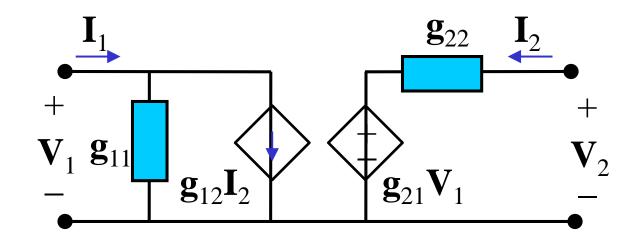
$$\mathbf{g}_{12} = \frac{\mathbf{I}_1}{\mathbf{I}_2} \bigg|_{\mathbf{V}_1 = \mathbf{0}}$$

$$\mathbf{g}_{22} = \frac{\mathbf{V}_2}{\mathbf{I}_2} \bigg|_{\mathbf{V}_1 = 0}$$

Con questa procedura si possono calcolare o misurare i parametri ibridi inversi

Parametri ibridi inversi

In generale, anche se il quadrupolo è non reciproco, il circuito equivalente è il seguente:



Se il quadrupolo è reciproco si ha $\mathbf{g}_{12} = -\mathbf{g}_{21}$.

Parametri ibridi/ibridi inversi

Poiché

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = [\mathbf{h}] \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} = [\mathbf{g}] \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} = [\mathbf{g}] \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

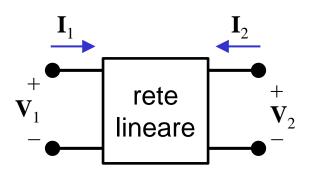
si ha

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = [\mathbf{h}] \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} = [\mathbf{h}] [\mathbf{g}] \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

e quindi

$$[\mathbf{g}] = [\mathbf{h}]^{-1}$$

Parametri di trasmissione



$$\mathbf{V}_1 = \mathbf{A}\mathbf{V}_2 - \mathbf{B}\mathbf{I}_2$$
$$\mathbf{I}_1 = \mathbf{C}\mathbf{V}_2 - \mathbf{D}\mathbf{I}_2$$

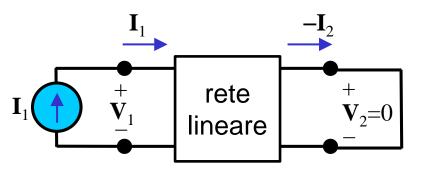
In forma matriciale:

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix} = [\mathbf{T}] \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix}$$

I coefficienti della matrice [T] sono detti parametri di trasmissione o parametri ABCD.

Parametri di trasmissione

I valori dei parametri di trasmissione si ricavano considerando \mathbf{V}_2 =0 oppure $-\mathbf{I}_2$ =0 :



$$\mathbf{B} = \frac{\mathbf{V}_1}{-\mathbf{I}_2} \bigg|_{\mathbf{V}_2 = 0}$$

$$\mathbf{D} = \frac{\mathbf{I}_1}{-\mathbf{I}_2} \bigg|_{\mathbf{V}_2 = \mathbf{0}}$$

$$\begin{array}{c|c} \mathbf{I}_1 & -\mathbf{I}_2 = 0 \\ \hline + \mathbf{V}_1 & \text{rete} \\ \hline - & \text{lineare} \end{array}$$

$$\mathbf{A} = \frac{\mathbf{V}_1}{\mathbf{V}_2} \bigg|_{-\mathbf{I}_2 = 0}$$

$$\mathbf{C} = \frac{\mathbf{I}_1}{\mathbf{V}_2} \bigg|_{-\mathbf{I}_2 = 0}$$

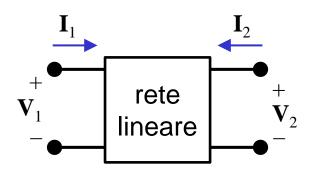
Con questa procedura si possono calcolare o misurare i parametri di trasmissione

Parametri di trasmissione

Se il quadrupolo è reciproco si ha:

$$det([T]) = AD - BC = 1$$

Parametri di trasmissione inversi



$$\mathbf{V}_2 = \mathbf{a}\mathbf{V}_1 - \mathbf{b}\mathbf{I}_1$$
$$\mathbf{I}_2 = \mathbf{c}\mathbf{V}_1 - \mathbf{d}\mathbf{I}_1$$

In forma matriciale:

$$\begin{bmatrix} \mathbf{V}_2 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ -\mathbf{I}_1 \end{bmatrix} = [\mathbf{t}] \begin{bmatrix} \mathbf{V}_1 \\ -\mathbf{I}_1 \end{bmatrix}$$

I coefficienti della matrice [t] sono detti parametri di trasmissione inversi.

Parametri di trasmissione inversi

Se il quadrupolo è reciproco si ha:

$$det([t]) = ad - bc = 1$$

Relazioni fra i diversi parametri

z	Z		TAC OIL		h		9 1					t
	Z ₁₁	Z ₁₂	$\frac{\mathbf{y}_{22}}{\Delta_y}$	$-rac{\mathbf{y}_{12}}{\Delta_{\mathbf{y}}}$	$\frac{\Delta_h}{\mathbf{h}_{22}}$	h ₁₂ h ₂₂	1 g ₁₁	- 9 ₁₂ 9 ₁₁	Ā	$\frac{\Delta_T}{\mathbf{C}}$	d c so	1 c
	Z ₂₁	Z 22	$-rac{\mathbf{y}_{21}}{\Delta_{\mathbf{y}}}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{h_{21}}{h_{22}}$	1 h ₂₂	9 ₂₁ 9 ₁₁	$\frac{\Delta_g}{\mathbf{g}_{11}}$	1 C	D	$\frac{\Delta_t}{\mathbf{c}}$	a C
у	$\frac{\mathbf{z}_{22}}{\Delta_{\mathbf{z}}}$	$-\frac{\mathbf{z}_{12}}{\Delta_{z}}$	y ₁₁	y ₁₂	1 h ₁₁	- h ₁₂ h ₁₁	$\frac{\Delta_g}{\mathbf{g}_{22}}$	9 ₁₂ 9 ₂₂	D B	$-\frac{\Delta_T}{B}$	min <mark>a</mark>	_ 1 b
	$-\frac{\mathbf{z}_{21}}{\Delta_{\mathbf{z}}}$	$\frac{\mathbf{z}_{11}}{\Delta_{\mathbf{z}}}$	y ₂₁	y ₂₂	h ₂₁ h ₁₁	$\frac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{g_{21}}{g_{22}}$	1 9 ₂₂		A B	$-rac{\Delta_t}{\mathbf{b}}$	d b
h	$\frac{\Delta_z}{\mathbf{z}_{22}}$	Z ₁₂ Z ₂₂	1 y ₁₁	$-\frac{y_{12}}{y_{11}}$	h ₁₁	h ₁₂	$\frac{\mathbf{g}_{22}}{\Delta_g}$	$-rac{{f g}_{12}}{\Delta_g}$	B D	$\frac{\Delta_T}{\mathbf{D}}$	b a	1 a
	$-\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}$	1 Z ₂₂	<u>y₂₁</u> y ₁₁	$\frac{\Delta_y}{\mathbf{y}_{11}}$	h ₂₁	h ₂₂	$-rac{\mathbf{g}_{21}}{\Delta_g}$	$\frac{\mathbf{g}_{11}}{\Delta_g}$	$-\frac{1}{D}$	CD	$\frac{\Delta_t}{\mathbf{a}}$	c a
g	1 Z ₁₁	- Z ₁₂ Z ₁₁	$\frac{\Delta_y}{\mathbf{y}_{22}}$	y ₁₂ y ₂₂	$\frac{\mathbf{h}_{22}}{\Delta_h}$	$-rac{\mathbf{h}_{12}}{\Delta_h}$	9 ₁₁	9 ₁₂	CA	$-\frac{\Delta_T}{\mathbf{A}}$	bro <mark>d</mark> bro	$-\frac{1}{d}$
	Z ₂₁ Z ₁₁	$\frac{\Delta_{\dot{z}}}{\mathbf{z}_{11}}$	- y ₂₁ y ₂₂	1 y ₂₂	$-\frac{\mathbf{h}_{21}}{\Delta_h}$	$\frac{\mathbf{h}_{11}}{\Delta_h}$	9 ₂₁	9 22	$\frac{15}{\triangle} \frac{1}{A} =$	B A	$\frac{\Delta_t}{\mathbf{d}}$	$-\frac{b}{d}$
т	z ₁₁ z ₂₁	$\frac{\Delta_z}{\mathbf{z}_{21}}$	_ y ₂₂ y ₂₁	- 1 y ₂₁	$-\frac{\Delta_h}{\mathbf{h}_{21}}$	- h ₁₁ h ₂₁	1 9 ₂₁	9 ₂₂ 9 ₂₁	roil Av i	, o Bura	$\frac{\mathbf{d}}{\Delta_t}$	$\frac{\mathbf{b}}{\Delta_t}$
	1 z ₂₁	Z ₂₂ Z ₂₁	$-\frac{\Delta_y}{\mathbf{y}_{21}}$	$-\frac{y_{11}}{y_{21}}$	$-\frac{h_{22}}{h_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	9 ₁₁ 9 ₂₁	$rac{\Delta_g}{\mathbf{g}_{21}}$	С	D	$\frac{\mathbf{c}}{\Delta_t}$	$\frac{\mathbf{a}}{\Delta_t}$
t	Z ₂₂ Z ₁₂	$\frac{\Delta_z}{\mathbf{z}_{12}}$	$-\frac{y_{11}}{y_{12}}$	$-\frac{1}{\mathbf{y}_{12}}$	1 h ₁₂	h ₁₁ h ₁₂	$-rac{\Delta_g}{\mathbf{g}_{12}}$		$\frac{\mathbf{D}}{\Delta_T}$	$\frac{\mathbf{B}}{\Delta_T}$	a a	b
	1 Z ₁₂	Z ₁₁ Z ₁₂	$-\frac{\Delta_y}{\mathbf{y}_{12}}$	$-\frac{y_{22}}{y_{12}}$	h ₂₂ h ₁₂	$\frac{\Delta_h}{\mathbf{h}_{12}}$	$-\frac{g_{11}}{g_{12}}$	$-\frac{1}{g_{12}}$	$\frac{\mathbf{C}}{\Delta_T}$	$\frac{\mathbf{A}}{\Delta_T}$	С	d

 $\Delta_{z} = \mathbf{z}_{11}\mathbf{z}_{22} - \mathbf{z}_{12}\mathbf{z}_{21},$

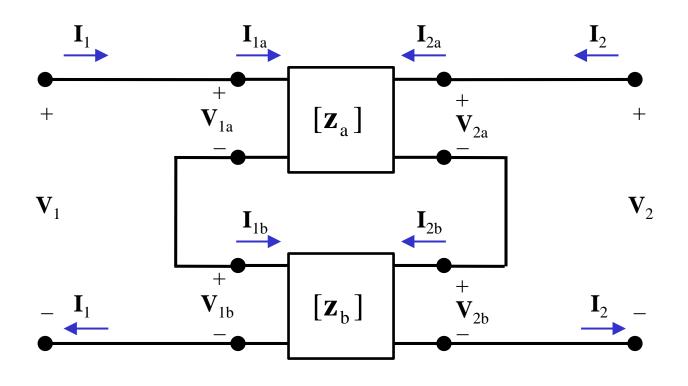
 $\Delta_h = \mathbf{h}_{11}\mathbf{h}_{22} - \mathbf{h}_{12}\mathbf{h}_{21},$

 $\Delta_T = AD - BC$

 $\Delta_{y} = \mathbf{y}_{11}\mathbf{y}_{22} - \mathbf{y}_{12}\mathbf{y}_{21}, \qquad \Delta_{g} = \mathbf{g}_{11}\mathbf{g}_{22} - \mathbf{g}_{12}\mathbf{g}_{21},$

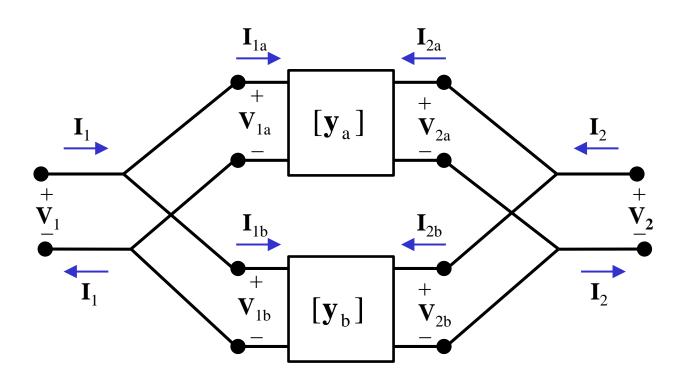
 $\Delta_t = \mathsf{ad} - \mathsf{bc}$

Interconnessione di quadrupoli in serie



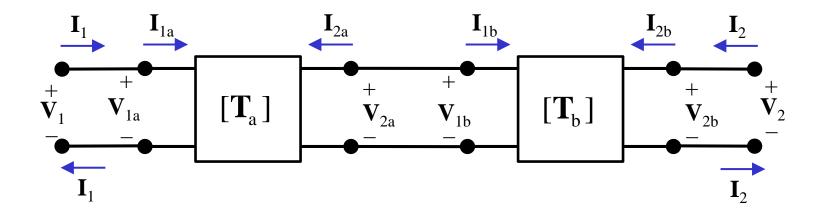
$$[\mathbf{z}] = [\mathbf{z}_{a}] + [\mathbf{z}_{b}]$$

Interconnessione di quadrupoli in parallelo



$$[\mathbf{y}] = [\mathbf{y}_{a}] + [\mathbf{y}_{b}]$$

Interconnessione di quadrupoli in cascata



$$[\mathbf{T}] = [\mathbf{T}_{a}][\mathbf{T}_{b}]$$