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The finite-element method (FEM) is a powerful and versatile technique,

adopted for the solution of several electromagnetic problems.

The FEM is a numerical technique for obtaining approximate

solutions to boundary-value problems. It is typically formulated

in the frequency domain, and it can be applied to the modeling

of complex regions, filled with an inhomogeneous medium.

The FEM is a numerical technique for obtaining approximate

solutions to boundary-value problems. It is typically formulated

in the frequency domain, and it can be applied to the modeling

of complex regions, filled with an inhomogeneous medium.

The FEM originated in the 1940’s from the need for solving complex

elasticity and structural analysis problems in civil and aeronautical

engineering. It was applied to the electromagnetic modeling by

P. Silvester in 1969 for the first time.

INTRODUCTION
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The investigation domain is divided in a number of subdomains, which

span the entire space with no overlap. Thanks to this feature, the FEM is

suitable to the modeling of arbitrary domains with inhomogeneous

medium.

In each subdomain (or element) the unknown function is approximated by

interpolating functions, which depend on the value of the unknown in the

element. Continuity conditions are imposed between adjacent elements.

INTRODUCTION
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INTRODUCTION

The FEM method is based on the transformation of a differential problem

with boundary conditions into an algebraic matrix problem.

The implementation of the FEM involves four steps:

1. domain segmentation in non-overlapping sub-domains (finite elements)

2. local definition of interpolating functions

3. formulation of the problem (by Rayleigh-Ritz or Galerkin method)

4. solution of the matrix problem

Reference books:

1. M.N.O. Sadiku, Numerical techniques in Electromagnetics, CRC Press, 2000.

2. Jianming Jin, The finite element method in electromagnetics, J. Wiley & Sons, 1993.
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VARIATIONAL METHODS

Variational methods include a wide class of techniques for the solution of

partial differential equations in mathematical physics and engineering.

They permit to replace the solution of a differential equation with the

minimization of some integrals.

Variational methods give accurate results with limited demands on memory

allocation and computing time.

They can be classified into two groups:

 direct methods (e.g. the classical Rayleigh-Ritz method);

 indirect methods (e.g. Galerkin and least square methods).

Preliminarily, we briefly discuss the Rayleigh-Ritz and Galerkin methods.
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RAYLEIGH-RITZ METHOD / 1

Let us consider the boundary value problem

Lf = f in  W

where L is a differential operator, f is an unknown function that satisfies

the boundary condition, and f is the excitation function (known).

If the operator L is self-adjoint, that is
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The unknown function f can be approximated by the expansion:

where vj basis functions defined in W e cj are unknown coefficients. After

replacing in the expression of the functional, it results:
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To minimize the functional F, we let its partial derivative with respect to cj

vanish. This leads to a set of linear algebraic equations
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RAYLEIGH-RITZ METHOD / 2
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The system of N equation can be recast in matrix form

][]][[ bcS 

where

  W W dLvvLvvS ijjiij   
2

1

Since the operator L is self-adjoint, it results:

W W dLvvS jiij  

W W dfvb ii

RAYLEIGH-RITZ METHOD / 3

The solution of the matrix equation yields the unknown coefficients cj and,

consequently, the unknown function f.
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GALERKIN METHOD / 1

Let us consider the same boundary value problem

Lf = f in  W

where L is a linear differential operator (no need it is self-adjoint).

][][][][
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

f

The unknown function f can be express as a linear combination of basis

functions vj:

and we use test functions wi=vi.

After replacing the approximated expression of f in the equation, both

member are multiplied by the test functions and integrated on the domain

W, thus providing a system of N equations:


WW

WW dfvdcvLv i

T

i    ][][  i = 1, 2, 3, …, N
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GALERKIN METHOD / 2

The system of N equations can be recast in matrix form:

][]][[ bcS 

where

W W dvLvS jiij     W W dfvb ii

It is finally observed that matrix S is symmetric if the operator L is self-

adjoint.

The resulting problem is formally identical to the one obtained by applying

the Rayleigh-Ritz method, but in this case no hypothesis that the operator is

self-adjoint is needed.
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EXAMPLE / 1
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Let us consider the simple example of a functional equation:

The functional associated to this equation is the following:
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The exact solution of this equation is:
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Solution by the Rayleigh-Ritz method

3

4
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The unknown can be represented by the polynomial function:

By applying the boundary conditions:

0)0( 1  cf

1)1( 432  cccf 432 1 ccc 

01 c

   xxcxxcxx  3

4

2

3)(f

After incorporating the boundary conditions, the polynomial function can be

expressed as:

EXAMPLE / 2
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After substituting in the expression of the functional and calculating the

integrals, it results:
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The functional is minimized with respect to c3 and c4. By setting to zero the

partial derivatives, we can obtain a system of equations:
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The solution of the system provides c3=1/2 and c4=1/6 (exact solution).

EXAMPLE / 3
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Solution by the Galerkin method

We use the following test functions:

xxw  2

1 xxw  3

2

   xxcxxcxx  3

4

2

3)(f

We approximate the unknown function as in the previous case:

where c3 and c4 are unknown coefficients to determine.

By performing the test, we derive the following two equations:
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EXAMPLE / 4
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By replacing the expressions of basis and test functions:

         

         



















1

0

3

1

0

3

4

2

32

2
3

1

0

2

1

0

3

4

2

32

2
2

 1  

 1  

dxxxxdxxxcxxcx
dx

d
xx

dxxxxdxxxcxxcx
dx

d
xx

After computing the integrals, we obtain:
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The solution of the system of equations yields c3=1/2 and c4=1/6

(exact solution).

EXAMPLE / 5
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Solution by the FEM method

The interval 0<x<1 is subdivided into three sub-intervals, and subdomain

basis functions are defined in each sub-interval.
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These basis functions are linear and moreover .)( ii xff 

f1=0 f2=? f3=? f4=1

As f1 and f4 are known (boundary conditions), the unknowns are f2 and f3.

EXAMPLE / 6
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By replacing the expressions of the basis functions in the functional and

integrating, we obtain:
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The partial derivatives with respect to f2 and f3 are set to zero, and they

provide the system of equations to solve:
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The solution of the system of equations provides f2=14/81 and f3=40/81

(approximate solution!).

EXAMPLE / 7
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NOTE: In this case the solution is exact in points x=x2 and x=x3, but this is

not always verified!

EXAMPLE / 8
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