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APPLICATIONS OF THE 

FINITE ELEMENT 

METHOD (FEM)

Lecture 12
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OUTLINE

In this lecture, two applications of the FEM are presented and

discussed:

1. FEM solution of the Laplace equation in 1D case

2. FEM solution of the wave equation in 3D case
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APPLICATION OF THE 

FINITE ELEMENT METHOD 

TO 1D LAPLACE EQUATION
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LAPLACE EQUATION / 1

In this section, the FEM is applied to the solution of the Laplace equation in

the one-dimensional case:

0)(2  xV (0  x  L)

with boundary conditions:

V(0)=a V(L)=b

1. DOMAIN DISCRETIZATION

The 1D domain 0  x  L is subdivided in N elements, with length .NLx 

0 L

V0 V1 V2 V3

1 2 3

NODES

ELEMENTS

0 1 2 3

POTENTIAL
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LAPLACE EQUATION / 2

2. INTERPOLATION FUNCTIONS

In each element, the unknown function V(x) is represented as the

combination of two linear interpolation functions
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LAPLACE EQUATION / 3

The functional associated to the Laplace equation in the e-th element is:

3. FORMULATION OF THE MATRIX PROBLEM
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where e represents la relative dielectric permittivity in the e-th element.

By replacing the expression of V e in the functional, it results:
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LAPLACE EQUATION / 4

where matrix [C] and vector [V] are defined after the global numbering of

the nodes:
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LAPLACE EQUATION / 5

The problem is formulated by minimizing the functional with respect to the

variables V1 … VN
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F
(k=0 .. N)

After incorporating the boundary conditions (which remove two variables)

V0=a VN=b

the final matrix problem results:
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LAPLACE EQUATION / 6

The resulting matrix problem has dimension (N1)(N1), where N is the

number of elements. The solution of the matrix problem provides the value

of the potential V in all internal nodes.

4. SOLUTION OF THE MATRIX PROBLEM

NOTE – It is noted that, with a suitable numbering of the nodes, the matrix

problem is a band matrix, where only three terms per row differ from zero,

clustered near the main diagonal.

This peculiarity of the problem can be exploited to reduce computing time

and memory allocation space.
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APPLICATION OF THE 

FINITE ELEMENT METHOD 

TO THE 3D WAVE EQUATION
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3D WAVE EQUATION / 1

We consider the wave equation in the 3D case:
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In a domain filled with two different materials and with perfect electric wall

condition ( ) at the boundary of the domain and field continuity

condition ( ) at the discontinuity surface.

0En
  EnEn

Perfect electric wallMedium 1

Medium 2

Discontinuity surface
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3D WAVE EQUATION / 2

In this case, the functional to minimize is the following:

with the boundary conditions:
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3D VECTOR FUNCTIONS

In 3D vector problems, scalar interpolation functions can be adopted:
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This choice of the interpolation functions automatically enforces the

inter-elements continuity of the function.
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BOUNDARY CONDITIONS

The perfect electric wall condition ( ) can be formulated for the three

Cartesian components x, y, and z:
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BOUNDARY CONDITION AT INTERFACES / 1

The condition at the interface between adjacent tetrahedra

filled with different materials is automatically guaranteed, since the

unknown function has the same value at common nodes.

  EnEn

common nodes
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BOUNDARY CONDITION AT INTERFACES / 2

The common nodes impose that also the normal components of the electric

fields are continuous, thus violating the boundary condition at the interface

However, this condition is a natural condition of the problem and therefore it

tends to be automatically satisfied by the field.

It can be shown that a finer mesh near the interface allows to achieve a

very rapid variation of the field, that emulates the discontinuity effect.

)()(   EnEn cc 
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BOUNDARY CONDITION AT INTERFACES / 3

A more rigorous approach consists in duplicating the nodes at the interface.

In this way, there are enough degrees of freedom to explicitly impose the

conditions:

It results:
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SPURIOUS SOLUTIONS

The application of the FEM can sometimes give erroneous solutions,

because the resulting electric field does not satisfy the divergence equation
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even though this equation derives from the wave equation

This is due to the regularity of the interpolation functions, which are C0

across interfaces (C1 regularity would be required).

simply by taking the divergence of both sides.
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SPURIOUS SOLUTIONS

Different solutions have been proposed to solve the spurious solutions:

1. using C1 interpolation functions (too complicate, unpractical)

2. formulating the problem for the H field, and then obtaining the E field as

3. adding a penalty term in the functional, whose minimization enforces the

divergence condition
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FAST SWEEP TECHNIQUES

Frequency domain solvers typically require to discretize the problem, build

a matrix, and solve the matrix problem at each frequency of interest.

Fast sweep methods attempts to find a rational polynomial that describes

the solution behavior with a minimum set of computer frequency points.

They are typically based on:

 Asymptotic waveform evaluation (AWE)

 Padé via Lanczos method (PVL)

 Adaptive Lanczos-Padé sweep (ALPS)

Nowaday these methods are quite reliable and they typically provide a

substantial reduction in computing time.


