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WAVEGUIDE MODES

Waveguide modes are known analytically only for waveguides with

canonical cross-section (like rectangular or circular waveguides).

For arbitrarily-shaped waveguides, the mode spectrum is computed

numerically, by solving an eigenvalue problem.
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WAVEGUIDE MODES

The eigenvalue problem can be formulated in different ways, starting

from the Helmoltz equations with proper boundary condition.
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FINITE DIFFERENCE METHOD

The finite difference (FD) method

requires the definition of a grid in the

entire domain of the cross-section.
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FINITE DIFFERENCE METHOD

By applying the finite difference method to the Helmoltz equations,

with grid step Dx=Dy=h it results:

where the nodes are numbered i and j in the x and y directions,

respectively.

After applying the boundary conditions, the following eigenvalue

problem is obtained:

which provides mode cutoff frequencies (as eigenvalues) and modal

scalar potentials at the nodes (as eigenvectors).
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FINITE DIFFERENCE METHOD

ADVANTAGES

 simple to implement

 a single linear eigenvalue problem provides all modes

DISADVANTAGES

 fine surface grid (large number of unknowns)

 cumbersome when higher-order modes are required and the

geometry exhibits sharp corners.
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FINITE ELEMENT METHOD

The unknown function (scalar potential) in each element is expressed 

as a combination of interpolating functions:

The FEM requires the segmentation of

the entire domain of the cross-section in

small elements, usually triangles.
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FINITE ELEMENT METHOD

The problem is formulated through the minimization of an integral

functional:

which finally leads to an eigenvalue problem in the form:

This problem is similar to the one obtained using the FD method and

provides mode cutoff frequencies (as eigenvalues) and modal scalar

potentials at the nodes (as eigenvectors).
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FINITE ELEMENT METHOD

ADVANTAGES

 light mathematical preprocessing

 inhomogeneous medium filling the waveguide

 a single linear eigenvalue problem provides all modes

DISADVANTAGES

 fine surface mesh (large number of unknowns)

 spurious solutions
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BOUNDARY ELEMENT METHOD

The BEM is based on the equivalence theorem: the metallic boundary

is replaced by an unknown current density acting in free-space.

The waveguide potentials are represented through Green’s integrals:
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BOUNDARY ELEMENT METHOD

The integral equation is obtained by enforcing the boundary

conditions, and it is solved by using the Method of Moments (MoM).

The resulting matrix equation is in the form:

where matrix A is frequency-dependent. The problem is solved by

determining the zeros of the determinant of matrix A

by using an iterative method, which is usually not reliable and very

time-consuming.
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BOUNDARY ELEMENT METHOD

ADVANTAGES

 accurate representation of the waveguide shape

 one-dimensional grid on the waveguide boundary

DISADVANTAGES

 homogeneous medium filling S

 moderate mathematical preprocessing

 frequency–by–frequency calculation

 possible missing of some modes
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BI-RME METHOD

 The unknown current density acts within an

exterior resonator with cross-section 

 The waveguide potentials are represented in

the enlarged domain  as follows:

21  , , FFG are static Green’s functions of the exterior resonator
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BI-RME METHOD: TM MODES / 1

For particular values of ’ a function  f can be found such that
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Since
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The BI–RME method consists of two steps:

1 – numerical inversion of the operator  L, i.e. solution of the 

deterministic Boundary Integral equation:

2 – numerical solution of the eigenvalue equation

where     is represented by a Resonant Mode Expansion involving 

the potential of the TM resonant modes of the exterior resonator 

~

Both problems are solved by using the MoM

BI-RME METHOD: TM MODES / 5
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T

p

pp scsf   )()(
























P






2

1

U





















Pc

c

c


2

1

c

 Expansion of 
~



























J


2

1























Ja

a

a


2

1

a

22

sinsin
2






















b

n

a

m

b

yn

a

xm

ab

j

j






a
T

j

jj rar   )()(~ 


xa

y

b

0



p

s

BI-RME METHOD: TM MODES / 6



University
of Pavia

Computational Electromagnetics Prof. Maurizio Bozzi BI-RME / 1 – page 23

Indicating with ( . , . ) the inner product in L2(S), by the Galerkin method

we obtain
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BI-RME METHOD: FINAL REMARKS

 The solution of a linear matrix eigenvalue problem permits to find all

TM modes in a prescribed frequency band

 A similar procedure has been developed for TE modes

 The potential in S can be calculated by
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(all the matrices are calculated during the analysis)
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the lowest 68 

TM modes of a 

cross-shaped 

waveguide

BI-RME METHOD: EXAMPLE
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The BI-RME method can also be used for determining the eigenfunctions 

of the 3D vector wave equation with electric-wall boundary condition

    E  k2E  0    on V

                 n  E  0    on V

  V   V

V V

SAME PHILOSOPHY, SAME ADVANTAGES …

… MORE COMPLICATED:

 vector BI-RME representation

 vector resonant modes

 dyadic Greens functions

BI-RME METHOD: 3D EXTENSION
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BI-RME METHOD

ADVANTAGES

 accurate representation of the waveguide shape

 one-dimensional grid on the waveguide boundary

 solution of a single linear eigenvalue problem

 the modal fields are automatically normalized

DISADVANTAGES

 homogeneous medium filling S

 heavy mathematical preprocessing
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WAVEGUIDE COMPONENTS

H-plane circuit E-plane circuit 3D circuit

The BI-RME method yields the mathematical model of a waveguide

component in the form of the pole expansion of the Y-parameters:

low-frequency terms modes of the cavity
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e , m

S1 S2

S3S4

Very simple analytical expressions yield the A- and B-coefficients in

terms of the cutoff wavelengths of the terminal waveguides (provided

they are sufficiently long)

Constants wm and Cim are related to the resonant modes of the

component with the ports closed by electric walls. These modes are

determined by the BI-RME method.

WAVEGUIDE COMPONENTS

low-frequency terms modes of the cavity
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H-plane three-cavity filter

 CPU time: 1.3 sec (Sun Ultra 10) (accuracy factor: z = 4.5)

 measurements refer to a prototype machined with very tight tolerances at

ESA-ESTEC

port 1 port 2

rounded irises

modelling performed by using  

ANAPLAN-W

WAVEGUIDE COMPONENTS - EXAMPLE
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E-plane directional coupler 
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BI-RME

measured

CPU time: 20 sec

(accuracy factor z  3.5)

longer than in the previous cases because

almost no part of the boundary fits with the

rectangular boundary

R
2

6 0 °

w

R
1

a = 15.80  w = 7.90  R1 = 5.35  R2 = 10.87  d = 24.00  (mm)

a

modelling performed by using  

ANAPLAN-W

WAVEGUIDE COMPONENTS - EXAMPLE
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3D structure to be embedded in a 

spherical or rectangular domain 

R

cut plane9
.5

2
5

 m
m

THREE–CAVITY WAVEGUIDE FILTER

Rounded corner due to

the machining process

 = sphere

• no part of the boundary matches with the sphere (the 

surface   coincides with ∂V ). 

• a big sphere must be considered to include long

terminal waveguides

Large number of variables both in the BI and in the RME

Spherical case:

 = rectangular

box

Number of variables much reduced 

• most of the boundary matches with the box  (the 

surface  reduces to the irises)

• volume  much smaller 

Rectangular case:

3 symmetry 

planes

WAVEGUIDE COMPONENTS - EXAMPLE
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THREE–CAVITY WAVEGUIDE FILTER
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WAVEGUIDE COMPONENTS - EXAMPLE
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w

R

t

h
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BI-RME analysis (solid lines) compared

with HFSS (markers)

3D DUAL-MODE FILTER 

mesh (symmetry exploited)

Computing time:

BI-RME 20 min on a Digital Alpha 2004/233 

(accuracy factor x = 3.5)

FEM        hours

 = sphere

WAVEGUIDE COMPONENTS - EXAMPLE
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DUAL MODE CIRCULAR WAVEGUIDE FILTER

 computing time: 15 min on a Digital Alpha 2004/233

 screws simulated as cylinders

BI–RME analysis (solid line) compared 

with measurements (markers)

WAVEGUIDE COMPONENTS - EXAMPLE
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OUTLINE

 Classical methods for calculating arbitrarily-shaped waveguide modes 

 Calculation of arbitrarily-shaped waveguide (and cavity) modes by the 

Boundary Integral-Resonant Mode Expansion (BI-RME) method

 BI-RME modeling of planar and 3D waveguide circuits

 Fast optimization of waveguide components

 Conclusions
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Both the tolerance analysis and the optimization require to evaluate

the effect of the perturbation of S on the quantities ki , Cpi

Apq , Bpq depend on the width and the height

of the terminal waveguides (not involved in

the optimization)

The perturbed poles and residues depend

on the perturbed eigensolutions of the

Helmoltz equation
i  ˜  ii  ˜  i

S  ˜ S 

Boundary conditions:

• Dirichelet  (H-plane components)

• Neumann (E-plane components)

Ypq
 


Apq

 

jk


jk


Bpq

 
 j

k3



Cpi
 Cqi

 

ki
2  k2

i



˜ Y pq
 


Apq

 

jk


jk


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 j

k3



˜ C pi
 ˜ C qi

 

˜ k i
2  k2

i


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Shape  perturbations

nn = perturbation parameter 

Qn = Qn (P) = shape function

n-th perturbation

˜  
2


 ˜    ˜   d ˜ S 

˜ S   2 ˜    ˜  /n d ˜ c 
˜ c 

˜  
2
d ˜ S 

˜ S 

 = 1  for Neumann b.c. 

 = 0  for Dirichelet b.c.

˜   x j   j

j1

M

Trial function:

n

1 3

2

S   ̃S 

  ˜  

P

nn Qn

c
˜ c 

S  ˜ S 

By applying the Rayleigh-Ritz method the

perturbed eigenvalues and eigenfunctions are

found by solving a matrix eigenvalue equation.

(small order matrices).

Matrix entries are integrals over the perturbed

boundary.

The functions to be integrated only involve the

values of the eigenfunctions (or of their normal

derivative) over the line 
(primary results of the BI-RME calculation of

the unperturbed eigensolution)
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optimization procedure

optimization steps are very fast

 definition of an optimization goal (in terms of S-parameters) and of a distance R

between the actual result and the goal;

 definition of N allowed deformations of the boundary (shape functions Q1 , Q2 , …, QN);

 use of the Rayleigh-Ritz method for determining the perturbed poles and the residues

with respect to each one of some given perturbation parameters n1 , n2 , …, nN ;

 for any nn, calculation of the perturbed scattering parameters and of the corresponding

distance R;

 determination of the sensitivities of the distance R with respect to n-parameters;

 use of the sensitivities in a quasi-Newton optimization algorithm, to minimize R.

 the recalculation of the poles and the residues of the Y-matrix is very fast due to the

efficiency of the BI-RME method;

 the scattering parameters are evaluated very rapidly in all the band of interest, by using

the mathematical model;

 the sensitivities R/ nn are obtained very easily by solving N small-size eigenvalue

problems.

WG COMPONENT OPTIMIZATION
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H-plane five-cavity X-band filter

GOALS:

Insertion Loss

< 2 dB in the band 9.5÷10.5 GHz

> 30 dB , f<9.3 GHz, f>10.8 GHz

CPU time per step: 3 sec

(Pentium III, 500 MHz, PC)

Symmetry was exploited to speed-up the 

analysis and simplify the optimization.
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 The “Montecarlo analysis” of the effect of machining inaccuracies is

performed by generating a set of many perturbed models of the

same component, with random perturbations.

 The perturbations correspond to random sets of the nparameters,

created by a generator of random numbers, according to the given

tolerances.

statistical samples consisting of thousands of cases can

be generated in short times, due to the rapidity of the

calculation of the perturbed poles and residues.
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Design and Tolerance Analysis of a 

Nine Cavity Meander Filter (H-plane)

experimental results and spread area

CPU time per step: 15 sec 

(Pentium III, 500 MHz, PC)

Tolerance analysis:  1 min

(statistical sample: 1000 cases)
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1

4

2

3
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dB
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2 .0210 .00

8 .43

2 .84

Optimization and tolerance analysis of

a WR-22 E-Plane 3-dB Coupler

Goal:  

3±0.5 dB coupling in the band 42-48 GHz

30 optimization steps

Total CPU time: 1min (Pentium III, 500 MHz)

Tolerance analysis: 2 min  

(±15 µm on all the dimensions, 1000 cases)

TOLERANCE ANALYSIS - EXAMPLE


