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OUTLINE

1. Application of the FDTD method to the Maxwell’s equations

2. Yee space-time map

3. Definition of the source 

4. The boundary conditions
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MAXWELL’S EQUATIONS (1D CASE)

Let us consider Maxwell’s equation in a isotropic and linear medium,

without any source:
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In the 1D case, a solution consists in a TEM wave propagating in the x

direction, with E=Ezz and H=–Hyy. The Maxwell’s equations result:
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1st equation

After defining a grid with space step Dx and time step Dt, the derivatives in

the 1st equation are approximated by the central difference

FIRST EQUATION / 1
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FIRST EQUATION / 2

By substituting in the 1st equation, it results:
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It is observed that electric and magnetic fields are interlaced in space and

time (i.e., samples are computed with space step Dx/2 and time step Dt/2).
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After re-ordering with respect to the most recent time value:
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FIRST EQUATION / 3

Ez(1/2,0)
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* K.S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in

Isotropic Media,” IEEE Trans Antennas Propagat., Vol. AP-14, No. 3, pp. 302–307, May 1966.

Yee space-time mapYee space-time map
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FIRST EQUATION / 4

For implementation purposes, in order to optimize the computational

efficiency, the equation can be recast as follows:
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Parameter Rb only depends on the position (through the magnetic

permeability ), and it can be computed once for all points before the time

iteration, with significant time saving.

If the material has no magnetic properties, Rb is constant value everywhere.
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SECOND EQUATION / 1

To obtain an iterative procedure, the second equation is used, and its

derivatives are approximated by the central difference around al space

point i+1/2 e and the time step n+1/2. It results:
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2nd equation

The 1st equation allows computing Hy(x,t+Dt/2) once the

values Hy (x, t–Dt/2) and Ez(x±Dx/2,t) are known.

The calculation of Ez(x±Dx/2,t) requires the solution of the

second Maxwell’s equation.
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SECOND EQUATION / 2

After reordering the equation, it results:
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NOTE: in this equation there are values calculated at three time steps

(n+1, n+1/2, n).

To avoid additional time steps, the electric field Ez (i+1/2,n+1/2) is obtained

by linear interpolation:
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SECOND EQUATION / 3
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After replacing the term in the equation, it results:

After re-ordering with respect to the most recent time value:
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SECOND EQUATION / 4

Similarly to the case of the 1st equation, this equation can be recast as

follows:
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where

Parameters Ca and Cb depend on the position only (through ,  and ), and

they can be computed once for all points before the time iteration.



University
of Pavia

Computational Electromagnetics Prof. Maurizio Bozzi FDTD / 2 – page 12

MAXWELL’S EQUATIONS (3D CASE)

The extension to the 3D case is only formally more complex (6 equations).
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FDTD SOURCES (1D CASE) / 1

The initial conditions for the FDTD problem are obtained by defining the

source field, which represents the excitation of the system.

The source field can be defined in two ways:

A. Transient pulse

(suitable for broadband analysis)

B. Sinusoidal source

(suitable for single-frequency analysis)
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A. Transient pulse

FDTD SOURCES (1D CASE) / 2
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The incident wave can be a transient pulse, e.g. with a gaussian shape.
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This type of source is defined in the entire computation domain as an

initial condition. The source is not updated, and it propagates through the

computational medium according to Maxwell's equations.
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B. Sinusoidal source

FDTD SOURCES (1D CASE) / 3

The electric field in a given location xi has a sinusoidal time variation

with frequency f0.

This source be thought of as a radiating dipole in the sense that the field

oscillates sinusoidally at that point for the duration of time marching.

In this case, the source is updated during the time marching.
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In open/radiation problems, we must apply an absorbing boundary at the

truncation of the computational region, which should minimize reflections.

ABSORBING BOUNDARY / 1

A. Absorbing Boundary Condition (ABC)

An absorbing boundary condition can be obtained by discretizing the wave

equation at the endpoints of the region (Mur boundary condition)
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The solution is given by two waves, propagating in the positive and

negative directions of the x axis when time increases, respectively.

which can be expressed in the form:
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By discretizing the equation in the N-1/2 space point and at n time step:
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After interpolating the samples calculated at 1/2 time step or space point, it

results:
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The following equation is applied in the right endpoint (N-th node):

ABSORBING BOUNDARY / 2
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B. Perfectly Matched Layer (PML)

Proposed for the first time by Bérenger in

1994, the PML method consists in adding

a thin layer of lossy anisotropic, non-

physical material at the boundary of the

computational domain.

* J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput.

Phys., Vol. 114, No. 1, pp. 185-200, 1994.

This method provides better performance than the ABCs, especially for

oblique incidence, but it (slightly) increases the dimension of the

computational domain.
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