
University
of Pavia

Computational Electromagnetics Prof. Maurizio Bozzi FDTD / 3 – page 1

NUMERICAL DISPERSION 

AND STABILITY OF 

THE FDTD METHOD

Lecture 4



University
of Pavia

Computational Electromagnetics Prof. Maurizio Bozzi FDTD / 3 – page 2

OUTLINE

1. Numerical dispersion 

2. Stability of the FDTD method
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NUMERICAL DISPERSION AND STABILITY

The choice of space step Dx and time step Dt determine the accuracy and

stability of the FDTD.

Besides the topics already discussed (description of the geometry and of

the field variation), two other issues need to be carefully accounted for:

1. numerical dispersion: under certain conditions, it may happen that

waves at different frequency propagate with different phase velocity (even

in vacuum);

2. stability: the space step Dx and time step Dt need to be properly

chosen, to avoid that the solution becomes arbitrarily large after a certain

number of time steps (due to the increasing error generated by the FDTD

approximation).
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Dispersion is the relation between the wave number and the frequency. 

To examine the numerical dispersion in the FDTD method, let us consider 

the wave equation in one dimension:

NUMERICAL DISPERSION / 1
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whose solution is:
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where:

 is the angular frequency,

k = /c is the wave number (linear relation between k and ),

vp = /k = c is the phase velocity (in vacuum).
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NUMERICAL DISPERSION / 2

The investigation of numerical dispersion is performed through the FDTD

solution of the wave equation.

A grid of points with space step Dx and time step Dt is defined.

The time and space derivative in the wave equation are approximated with

the central difference.
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NUMERICAL DISPERSION / 3
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By replacing the central difference expressions in the wave equation, it

results:
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After re-ordering with respect to the most recent time value:
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Subsequently, the a-priori information on the solution of the wave equation

is exploited:

NUMERICAL DISPERSION / 4
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where represents the wavenumber at the angular frequency , obtained

through the FDTD solution of the wave equation.

This solution is incorporated in the discretized equation. After some

algebraic manipulation, it finally results that the dispersion relation

between k and  is
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NUMERICAL DISPERSION / 5
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It is noted that this relation is non-linear and depends on the choice of the

space step Dx and the time step Dt.

Since this relation is non-linear, the numerical solution

is affected by phase errors, because the phase

velocity changes with frequency
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NUMERICAL DISPERSION / 6

CASE 1 – In the case and , the cosine is approximated by

its Taylor series, this resulting
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CASE 2 – In the case (magic time step), it resultsxtc DD
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CASE 3 – In the most general case, the dispersion relation is non-linear.
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NUMERICAL DISPERSION / 7

If the dispersion relation is non-linear, the phase velocity depends on

frequency:
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The phase velocity depends on the time and space step. For instance, if

Dx=0/10 e cDt= Dx/2, it results:

c
k

vp 9873.0~
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

In the propagation over a distance of 10 0, the phase error due to numerical

dispersion can be significantly large:

• if Dx=0/10 and cDt= Dx/2:

• if Dx=0/20 and cDt= Dx/2:

cvp  9873.0~ 

cvp  9968.0~ 

phase error=45.72°

phase error=11.19°
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INSTABILITY

In order to guarantee numerical stability for the FDTD method, the upper

limit of the time step Dt must be bounded by a criterion which restricts an

update cycle’s fields propagation from cell to cell being faster than allowed

by the phase velocity in the medium.

A stability analysis for FDTD was performed, and provided the Courant-

Friedrichs-Lewy criterion
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STABILITY IN FDTD METHOD / 1

Time step Dt

tjexUtxU  )(),( 0

As discussed in the previous section, the solution of the wave equation can

be expressed in the form:

where only the time dependency is explicitely shown.

This solution satisfies the following differential equation:
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STABILITY IN FDTD METHOD / 2

After approximating the equation by the central difference, it results:
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When Dt is small, we can define a numerical increment factor q
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Stability is guaranteed under the condition .

Introducing q in the discretized differential equation and reordering, the

following quadratic equation is obtained:
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STABILITY IN FDTD METHOD / 3

The solution to this equation is
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Numerical stability requires that . A sufficient condition is the following:
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where T=2/ represents the period of the wave.
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STABILITY IN FDTD METHOD / 4

The homogenous scalar wave equation in one-dimensional case for

harmonic waves can be expressed as:
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and the solution to this equation is a plane wave of the form
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The second derivative can be approximated by using the central difference

method:
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STABILITY IN FDTD METHOD / 5

Substituting this expression into a discretized equation, it results:

)(
)2/(

)2/(sin
)(

)(

2
2

2

22

2

xU
x

xk
xU

x

ee

x

U xjkxjk

D

D


D






 DD

By introducing the obtained expression in the initial differential equation:
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Multiplying by (cDt/2)2 and exploiting the relation previously

achieved, it results:
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STABILITY IN FDTD METHOD / 6

As the sin function is bounded by 1, the following condition must be met, in

order for the above relation to be satisfied for any value of k.
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which reduces to the stability condition:
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NOTE: For higher dimensions, the stability condition becomes:
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where D=1,2,3 is the dimension of the considered space.


