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INTRODUCTION

In this lecture, the FDTD method is applied to three cases of practical
Interest:

1. Calculation of the TEM mode characteristics of a shielded stripline

2. Modeling of a transmission line

3. Calculation of the modes of a metallic waveguide

The achieved results represent the starting point for the numeric
implementation of computer codes.
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The FDTD method is applied to the calculation of the TEM mode
characteristics of a shielded stripline.

A

y Inner conductor
(Cy)
Outer conductor /

(Co) ~
Homogeneous dielectric

__—  medium ()

./

»
»

X
The TEM mode of this structure can be determined through the solution of
the Laplace equation, with the proper boundary condition:

{V:O in C,

V2V=0 inS Vol G
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TEM MODE OF A SHIELDED STRIPLINE/2

In a Cartesian system, Laplace equation can be expressed in the form:

oV oV
= + =
aXZ 8_)/2

1V 4 0

By applying the central difference method, and using a mesh grid with size
Ax e Ay, in direction x and y, respectively, it results:

Vi+1,j)=2V@i,))+Vi-1,))
Ax? i

VD=2V )+ =)

0
Ay2

Computational Electromagnetics Prof. Maurizio Bozzi FDTD /4 — page 4



If Ax=Ay, it results:
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V{,j) =i[V(i+1,j)+V(i—1,j)+V(i,j+1)+V(i,j—1)]

This equation is applied to all inner grid
nodes, thus leading to a system of
equations.

The value of function V in the boundary
nodes (conductors C, e C,) s
determined by the boundary conditions.

v

The solution of the system of equations provides the values of Vin all grid

nodes.
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Based on the obtained results, the characteristic impedance of the TEM
mode can be computed.
The characteristic impedance Z, is defined as:

where L and C represent the inductance and capacitance per unit length,
respectively. The phase velocity v is given by:

1
V=—
NLC
By expressing L in terms of v and replacing it in the formula of Z,, it results:

1

/. =—
" Cy

Computational Electromagnetics Prof. Maurizio Bozzi FDTD /4 — page 6



=" University

TEM MODE OF A SHIELDED STRIPLINE/S (k) "o pavia

As the dielectric medium is homogeneous, v results:

YV =—F——
Vgr

Capacitance C can be computed by using the following relation:

where Q represents the charge per unit length and V, is the voltage
between inner and outer conductors.

From the boundary condition it results:

V,=1
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TEM MODE OF A SHIELDED STRIPLINE/6

Charge Q is computed by appying the Gauss law along a closed path
around the inner conductor:

" N y
O=¢D-ndl=¢sE-ndl = }
§ § —=T=T= f_ TN
I [ |
:—§5VV ndﬁ——j;g—df ! ) :’I{
I Y 74y
/
By discretizing the integral, it results: e
Ve =Vy v, =V,
=—¢ Ay + LAY +.
0 ( P ) ) \
If AX=Ay, it results: /
Q=eW,+V, .=V, =V, —...)
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MODELING OF A TRANSMISSION LINE / 1

The FDTD method can be applied to the modeling of transmission lines.

I(z,1) I(z,t) L (z+Azt)
V(z,t) V(z, t* —C V(z+Az, 1)
— — o o
~ >
ol (z,t) oV (z,t) ol (z,t)
Viz,t)-V(z+Az,t)=L Az =—L———=
(&0-Viz ) ot Oz ot
oV (z,t) ol(z,t) oV (z,t)
I(z,)-1(z+Az,t)=C Az =-C
&)=z +85,0 ot o ot
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MODELING OF A TRANSMISSION LINE / 2

The differential equations are discretized by using the central difference
method, with space grid size Az and time step At.
From the first equation it results:

oV (z,t) _V(@,n)-V({i-1,n)
Oz 2=(i-1/2) Az, t=nAt B Az

ol(z,t) 1@ -1/2,n+1/2)-1(-1/2,n-1/2)
Ot |._i1/2) e, 1=nn B At

By replacing in the first equation, it results:
V(i,n)—V(i—1,n) _ 7 I1(i—-1/2,n+1/2)-1(i—-1/2,n—-1/2)
Az At
After re-ordering with respect to the most recent time value:

AtV (i,n)—V(i—1,n)
L Az

1(i—1/2,n+1/2)=1(i—-1/2,n—-1/2)—
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MODELING OF A TRANSMISSION LINE/ 3

Similarly, from the second equation it results:

ol(z,t) 1@ -1/2,n+1/2)-1(i-3/2,n+1/2)
Oz z=(i—1)Az, t=(n+1/2) At B Az

oV (z,t) Vi-Lan+1)-V(@i-1,n)
Ot |oe(imiyae, =(ns1/2)0 B At

By replacing in the second equation, it results:

1G-1/2,n41/2)~1(=3/2,n+1/2) __ V(i=Ln+)=V(i-Ln)

Az At

After re-ordering with respect to the most recent time value:

V(i—l,n+1)=V(i—1,n)—ét](l_1/2’n+1/2)A_Z](l_3/2’n+1/2)
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MODELING OF A TRANSMISSION LINE / 4

If there is a current source at section Zg, the equations are modified in the

following way:

I(z,t) —
— oV (z,1) _ 7 ol(z,t)
l(t) V(Zat) oz Ot
ol(z,?) oV(z,t) '
— =-C +0(z— t
| = oz o ToETz)I0
z, =(k—DAz z
The discretized equations become:
1(k—1/2,n—|—1/2) :I(k—1/2,n—1/2)— it V(k,n)—AZ(k—ljn)

Vik—1ln+1)=V(k—1,n)+
A= 120412) =1 =324 12) AL
C Az C
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The boundary conditions are represented by the load resistances, at
sections z=0 and z=L.

A. Case z=0

If we consider the load impedance R, at section z=0, it results:

100,1) —,

R, [ V(0,?) V(0,t)=-R,[(0,?)

O A

v

The second equation, discretized at z=0, needs to be modified.
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MODELING OF A TRANSMISSION LINE / 6

The space derivative of the current in section z=0 is:

0l(z,t) CI(1/2,n+1/2)=1(0,n+1/2))
0- S NN Az /2

By exploiting the boundary condition (Ohm law), it results:

ol (z,t)
Oz

CI(1/2,n+1/2)+V(0,n+1/2)/ R,
z=0, t=(n+1/2) At Az /2

As the voltage is not computed at time step (n+1/2)At, the interpolated
value is used:

ol(z,t)
Oz

CI(1/2,n+1/2)+[V(0,n) + V(0,n +1)]/ 2R }——
z=0, t=(n+1/2) At Az/2
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MODELING OF A TRANSMISSION LINE / 7

The time derivative of voltage is:

oV (z,t) _V(O,n+1)-V(0,n)
Ot 2=0, t=(n+1/2) At At

By replacing in the second equation, it results:

21(1/2,n+1/2)+ [V (0,m) +V(O0,n + D]/ R, YO+ -V (0,n)

Az At

After re-ordering with respect to the most recent time value:

yo RCAz=AL, (o 2R

V(0,n+1 —
R,CAz + At R,CAz + At

I1(1/2,n+1/2)
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MODELING OF A TRANSMISSION LINE/ 8

D=
S

| B. Case z=L |

If we consider the load impedance R, at section z=L, it results:

I(L,1)
—
V(Lat)[ R, V(L,t) =R, I(L,?)
|
L Z

Also in this case, the second equation, discretized at z=L, needs to be
modified. It results:

RCA=Ay, 1y, 2RA

V(N_,n+1)= +
R,CAz+ At R, CAz + At

I(N.—1/2,n+1/2)
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MODES OF A METALLIC WAVEGUIDE / 1

The calculation of the modes of a metallic waveguide can be implemented
by using a finite difference method.

The waveguide modes can be expressed in terms of scalar potentials,
which are the eigen-solutions of the Helmholtz equation with proper
boundary conditions:

2 1200 - y] 0S

Vi -k 0=0 i3 (TM modes) L
O =0 suoS
S

2y _ 2 — -
Vi -k e =0 m35 (TE modes)

dD/dn=0  sudS :

X
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MODES OF A METALLIC WAVEGUIDE / 2

The Helmholtz equation is discretized by adopting the central difference
method. By using a space grid size Ax=Ay=h, it results:

OG+1L H)+D>GE—-1)+DGE, j+D)+D(G, j—1)—(4=-hk>)D(, j)=0

yA

NOTE: this equation is applied

to all inner nodes.

»
»

X

For nodes located on the boundary, TM and TE cases require different
treatments.
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MODES OF A METALLIC WAVEGUIDE / 3

|A. TM modes |

In the case of TM modes, the Dirichlet condition is applied (®=0 on oS).

|B. Modi TE |

In the case of TE modes, the Neumann condition is applied
(d®/dn=0 on 0S). In the case shown in the figure, it results:

oD

E 0 [ — (I)D:(DE

It finally leads to:

D, +D,+20, —(4—hk*)D,=0
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MODES OF A METALLIC WAVEGUIDE / 4

By applying the discretized Helmholtz equation and the boundary
conditions to all grid nodes, a system of N equations is obtained, in the
form:

(A-AI)® =0 or AD = 1D

where A is an NxN matrix and | is the identity matrix with size NxN.

The solution of the systems yields:
eigen-vectors @ (related to the values of modal voltage in the grid nodes)
eigen-values A (related to the modal cutoff wave-numbers).

NOTE: The solution of this problem can be based on a direct method: by
imposing |A-Al|=0, a polynomial function in A is obtained, whose zeros
provide the eigen-values of the problem.
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