

Lecture 5

In this lecture, the FDTD method is applied to three cases of practical interest:

- 1. Calculation of the TEM mode characteristics of a shielded stripline
- 2. Modeling of a transmission line
- 3. Calculation of the modes of a metallic waveguide

The achieved results represent the starting point for the numeric implementation of computer codes.

The FDTD method is applied to the calculation of the TEM mode characteristics of a shielded stripline.

The TEM mode of this structure can be determined through the solution of the Laplace equation, with the proper boundary condition:

$$
\nabla_{\mathbf{T}}^2 V = 0 \quad \text{in } \mathbf{S} \qquad \begin{cases} V = 0 & \text{in } \mathbf{C}_0 \\ V = 1 & \text{in } \mathbf{C}_1 \end{cases}
$$

In a Cartesian system, Laplace equation can be expressed in the form:

$$
\nabla_{\rm T}^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0
$$

By applying the *central difference* method, and using a mesh grid with size $\Delta x \in \Delta y$, in direction *x* and *y*, respectively, it results:

$$
\frac{V(i+1,j) - 2V(i,j) + V(i-1,j)}{\Delta x^2} + \frac{V(i,j+1) - 2V(i,j) + V(i,j-1)}{\Delta y^2} = 0
$$

$$
\left(\begin{matrix} \mathbf{1} \\ \mathbf{1} \end{matrix}\right)^{\top}
$$

Jniversity of Pavia

If $\Delta x = \Delta y$, it results:

$$
V(i, j) = \frac{1}{4} [V(i+1, j) + V(i-1, j) + V(i, j+1) + V(i, j-1)]
$$

This equation is applied to all inner grid Y nodes, thus leading to a system of equations.

The value of function *V* in the boundary nodes (conductors C_0 e C_1) is determined by the boundary conditions.

The solution of the system of equations provides the values of *V* in all grid nodes.

Based on the obtained results, the characteristic impedance of the TEM mode can be computed.

The characteristic impedance Z_{0} is defined as:

$$
Z_0 = \sqrt{\frac{L}{C}}
$$

where *L* and *C* represent the inductance and capacitance per unit length, respectively. The phase velocity *v* is given by:

$$
v = \frac{1}{\sqrt{LC}}
$$

By expressing L in terms of v and replacing it in the formula of Z_{0} , it results:

$$
Z_0 = \frac{1}{Cv}
$$

As the dielectric medium is homogeneous, *v* results:

Capacitance *C* can be computed by using the following relation:

$$
C = \frac{Q}{V_d}
$$

where Q represents the charge per unit length and V_d is the voltage between inner and outer conductors.

From the boundary condition it results:

$$
V_d = 1
$$

Charge *Q* is computed by appying the Gauss law along a closed path around the inner conductor:

$$
Q = \oint_{\ell} \mathbf{D} \cdot \hat{\mathbf{n}} \, d\ell = \oint_{\ell} \mathbf{\varepsilon} \, \mathbf{E} \cdot \hat{\mathbf{n}} \, d\ell =
$$

$$
= -\oint_{\ell} \mathbf{\varepsilon} \, \nabla V \cdot \hat{\mathbf{n}} \, d\ell = -\oint_{\ell} \mathbf{\varepsilon} \, \frac{\partial V}{\partial n} \, d\ell
$$

By discretizing the integral, it results:

$$
Q = -\varepsilon \left(\frac{V_P - V_N}{\Delta x} \Delta y + \frac{V_M - V_L}{\Delta x} \Delta y + \ldots \right)
$$

If $\Delta x = \Delta y$, it results:

$$
Q = \varepsilon (V_N + V_L + \dots - V_P - V_M - \dots)
$$

The FDTD method can be applied to the modeling of transmission lines.

$$
V(z,t) - V(z + \Delta z, t) = L \frac{\partial I(z,t)}{\partial t} \Delta z
$$

$$
I(z,t) - I(z + \Delta z, t) = C \frac{\partial V(z,t)}{\partial t} \Delta z
$$

$$
\frac{\partial V(z,t)}{\partial z} = -L \frac{\partial I(z,t)}{\partial t}
$$

$$
\frac{\partial I(z,t)}{\partial z} = -C \frac{\partial V(z,t)}{\partial t}
$$

The differential equations are discretized by using the *central difference* method, with space grid size Δz and time step Δt .

From the **first equation** it results:

$$
\frac{\partial V(z,t)}{\partial z}\Big|_{z=(i-1/2)\Delta z,\,t=n\Delta t} = \frac{V(i,n)-V(i-1,n)}{\Delta z}
$$

$$
\frac{\partial I(z,t)}{\partial t}\Big|_{z=(i-1/2)\Delta z,\,t=n\Delta t} = \frac{I(i-1/2,n+1/2)-I(i-1/2,n-1/2)}{\Delta t}
$$

By replacing in the first equation, it results:

$$
\frac{V(i,n)-V(i-1,n)}{\Delta z} = -L \frac{I(i-1/2,n+1/2)-I(i-1/2,n-1/2)}{\Delta t}
$$

After re-ordering with respect to the most recent time value:

MODELING OF A TRANSMISSION LINE / 2

$$
I(i-1/2,n+1/2) = I(i-1/2,n-1/2) - \frac{\Delta t}{L} \frac{V(i,n) - V(i-1,n)}{\Delta z}
$$

University of Pavia

Similarly, from the **second equation** it results:

$$
\frac{\partial I(z,t)}{\partial z}\Big|_{z=(i-1)\Delta z, t=(n+1/2)\Delta t} = \frac{I(i-1/2, n+1/2) - I(i-3/2, n+1/2)}{\Delta z}
$$

$$
\frac{\partial V(z,t)}{\partial t}\Big|_{z=(i-1)\Delta z, t=(n+1/2)\Delta t} = \frac{V(i-1, n+1) - V(i-1, n)}{\Delta t}
$$

By replacing in the second equation, it results:

$$
\frac{I(i-1/2,n+1/2)-I(i-3/2,n+1/2)}{\Delta z} = -C\frac{V(i-1,n+1)-V(i-1,n)}{\Delta t}
$$

After re-ordering with respect to the most recent time value:

$$
V(i-1,n+1) = V(i-1,n) - \frac{\Delta t}{C} \frac{I(i-1/2,n+1/2) - I(i-3/2,n+1/2)}{\Delta z}
$$

If there is a current source at section z_g , the equations are modified in the following way:

The discretized equations become:

$$
I(k-1/2, n+1/2) = I(k-1/2, n-1/2) - \frac{\Delta t}{L} \frac{V(k,n) - V(k-1,n)}{\Delta z}
$$

$$
V(k-1,n+1) = V(k-1,n) +
$$

$$
-\frac{\Delta t}{C} \frac{I(k-1/2,n+1/2) - I(k-3/2,n+1/2)}{\Delta z} + \frac{\Delta t}{C} i(n+1/2)
$$

The boundary conditions are represented by the load resistances, at sections *z*=0 and *z*=*L*.

If we consider the load impedance R_0 at section $z=0$, it results:

The second equation, discretized at *z*=0, needs to be modified.

University of Pavia

The space derivative of the current in section *z*=0 is:

$$
\left. \frac{\partial I(z,t)}{\partial z} \right|_{z=0, t=(n+1/2)\Delta t} = \frac{I(1/2, n+1/2) - I(0, n+1/2)}{\Delta z/2}
$$

By exploiting the boundary condition (Ohm law), it results:

$$
\left. \frac{\partial I(z,t)}{\partial z} \right|_{z=0, t=(n+1/2)\Delta t} = \frac{I(1/2, n+1/2)\left(+V(0, n+1/2)/R_0\right)}{\Delta z/2}
$$

As the voltage is not computed at time step $(n+1/2)\Delta t$, the interpolated value is used:

$$
\frac{\partial z}{\partial z}\Big|_{z=0, t=(n+1/2)\Delta t} \frac{\Delta z/2}{\Delta z/2}
$$
\nAs the voltage is not computed at time step $(n+1/2)\Delta t$, the interpolated value is used:\n
$$
\frac{\partial I(z,t)}{\partial z}\Big|_{z=0, t=(n+1/2)\Delta t} = \frac{I(1/2, n+1/2)\left[\frac{1}{2}\left[V(0,n)+V(0,n+1)\right]/2R_0\right]}{\Delta z/2}
$$
\nComputational Electromagnetics

The time derivative of voltage is:

$$
\left. \frac{\partial V(z,t)}{\partial t} \right|_{z=0, t=(n+1/2)\Delta t} = \frac{V(0,n+1)-V(0,n)}{\Delta t}
$$

By replacing in the second equation, it results:

$$
\frac{2I(1/2,n+1/2) + [V(0,n) + V(0,n+1)]/R_0}{\Delta z} = -C \frac{V(0,n+1) - V(0,n)}{\Delta t}
$$

After re-ordering with respect to the most recent time value:

$$
V(0, n+1) = \frac{R_0 C \Delta z - \Delta t}{R_0 C \Delta z + \Delta t} V(0, n) - \frac{2R_0 \Delta t}{R_0 C \Delta z + \Delta t} I(1/2, n+1/2)
$$

B. Case *z*=*L*

If we consider the load impedance R_L at section $z=L$, it results:

 R_L

I(*L*,*^t*)

 $V(L,t) = R_L I(L,t)$ *z L* Also in this case, the second equation, discretized at *z*=*L*, needs to be

modified. It results:

 $V(L,t)$

$$
V(N_z, n+1) = \frac{R_L C \Delta z - \Delta t}{R_L C \Delta z + \Delta t} V(N_z, n) + \frac{2R_L \Delta t}{R_L C \Delta z + \Delta t} I(N_z - 1/2, n+1/2)
$$

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}
$$

University of Pavia

MODES OF A METALLIC WAVEGUIDE / 1

The calculation of the modes of a metallic waveguide can be implemented by using a finite difference method.

The waveguide modes can be expressed in terms of scalar potentials, which are the eigen-solutions of the Helmholtz equation with proper boundary conditions:

$$
\begin{bmatrix}\n\nabla_{\text{T}}^{2} \Phi - k^{2} \Phi = 0 & \text{in } S \\
\Phi = 0 & \text{su } \partial S\n\end{bmatrix}
$$
\n(TM modes)
\n
$$
\begin{bmatrix}\n\nabla_{\text{T}}^{2} \Phi - k^{2} \Phi = 0 & \text{in } S \\
\frac{d\Phi}{dn} = 0 & \text{su } \partial S\n\end{bmatrix}
$$
\n(TE modes)

MODES OF A METALLIC WAVEGUIDE / 2

The Helmholtz equation is discretized by adopting the *central difference* method. By using a space grid size $\Delta x=\Delta y=h$, it results:

 $\Phi(i+1, j) + \Phi(i-1, j) + \Phi(i, j+1) + \Phi(i, j-1) - (4 - h^2 k^2) \Phi(i, j) = 0$

NOTE: this equation is applied to all inner nodes.

For nodes located on the boundary, TM and TE cases require different treatments.

A. TM modes

In the case of TM modes, the Dirichlet condition is applied (Φ =0 on ∂S).

B. Modi TE

In the case of TE modes, the Neumann condition is applied ($d\Phi/dn=0$ on ∂S). In the case shown in the figure, it results:

$$
\frac{\partial \Phi}{\partial n} = 0 \qquad \blacksquare \Longrightarrow \qquad \Phi_D = \Phi_E
$$

It finally leads to:

$$
\Phi_B + \Phi_C + 2\Phi_D - (4 - h^2 k^2)\Phi_A = 0
$$

MODES OF A METALLIC WAVEGUIDE / 4

By applying the discretized Helmholtz equation and the boundary conditions to all grid nodes, a system of *N* equations is obtained, in the form:

$$
(A - \lambda I)\Phi = 0
$$
 or $A\Phi = \lambda \Phi$

where A is an $N\times N$ matrix and I is the identity matrix with size $N\times N$.

The solution of the systems yields:

eigen-vectors Φ (related to the values of modal voltage in the grid nodes) eigen-values λ (related to the modal cutoff wave-numbers).

NOTE: The solution of this problem can be based on a direct method: by imposing $[A-\lambda I]=0$, a polynomial function in λ is obtained, whose zeros provide the eigen-values of the problem.