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INTRODUCTION

In this lecture, the FDTD method is applied to three cases of practical

interest:

1. Calculation of the TEM mode characteristics of a shielded stripline

2. Modeling of a transmission line

3. Calculation of the modes of a metallic waveguide

The achieved results represent the starting point for the numeric

implementation of computer codes.
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TEM MODE OF A SHIELDED STRIPLINE/1

The FDTD method is applied to the calculation of the TEM mode

characteristics of a shielded stripline.
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The TEM mode of this structure can be determined through the solution of

the Laplace equation, with the proper boundary condition:
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In a Cartesian system, Laplace equation can be expressed in the form:
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By applying the central difference method, and using a mesh grid with size

Dx e Dy, in direction x and y, respectively, it results:
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x

yThis equation is applied to all inner grid

nodes, thus leading to a system of

equations.

If Dx=Dy, it results:
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The solution of the system of equations provides the values of V in all grid

nodes.

The value of function V in the boundary

nodes (conductors C0 e C1) is

determined by the boundary conditions.

TEM MODE OF A SHIELDED STRIPLINE/3
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Based on the obtained results, the characteristic impedance of the TEM

mode can be computed.

The characteristic impedance Z0 is defined as:
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where L and C represent the inductance and capacitance per unit length,

respectively. The phase velocity v is given by:
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By expressing L in terms of v and replacing it in the formula of Z0, it results:
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As the dielectric medium is homogeneous, v results:
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Capacitance C can be computed by using the following relation:

dV

Q
C 

where Q represents the charge per unit length and Vd is the voltage

between inner and outer conductors.

From the boundary condition it results:

1dV

TEM MODE OF A SHIELDED STRIPLINE/5
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Charge Q is computed by appying the Gauss law along a closed path

around the inner conductor:
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By discretizing the integral, it results:

If Dx=Dy, it results:
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The FDTD method can be applied to the modeling of transmission lines.
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The differential equations are discretized by using the central difference

method, with space grid size Dz and time step Dt.

From the first equation it results:
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By replacing in the first equation, it results:
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After re-ordering with respect to the most recent time value:

MODELING OF A TRANSMISSION LINE / 2
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Similarly, from the second equation it results:
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By replacing in the second equation, it results:
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After re-ordering with respect to the most recent time value:
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If there is a current source at section zg, the equations are modified in the

following way:
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The discretized equations become:

MODELING OF A TRANSMISSION LINE / 4



University
of Pavia

Computational Electromagnetics Prof. Maurizio Bozzi FDTD / 4 – page 13

The boundary conditions are represented by the load resistances, at

sections z=0 and z=L.
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If we consider the load impedance R0 at section z=0, it results:

The second equation, discretized at z=0, needs to be modified.
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By exploiting the boundary condition (Ohm law), it results:

The space derivative of the current in section z=0 is:
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As the voltage is not computed at time step (n+1/2)Dt, the interpolated

value is used:
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The time derivative of voltage is:
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By replacing in the second equation, it results:
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B. Case z=L
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If we consider the load impedance RL at section z=L, it results:
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Also in this case, the second equation, discretized at z=L, needs to be

modified. It results:
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The calculation of the modes of a metallic waveguide can be implemented

by using a finite difference method.

The waveguide modes can be expressed in terms of scalar potentials,

which are the eigen-solutions of the Helmholtz equation with proper

boundary conditions:
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The Helmholtz equation is discretized by adopting the central difference

method. By using a space grid size Dx=Dy=h, it results:
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NOTE: this equation is applied

to all inner nodes.

For nodes located on the boundary, TM and TE cases require different

treatments.

MODES OF A METALLIC WAVEGUIDE / 2
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In the case of TM modes, the Dirichlet condition is applied (=0 on S).

A. TM modes

In the case of TE modes, the Neumann condition is applied

(d/dn=0 on S). In the case shown in the figure, it results:
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It finally leads to:
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By applying the discretized Helmholtz equation and the boundary

conditions to all grid nodes, a system of N equations is obtained, in the

form:

where A is an NN matrix and I is the identity matrix with size NN.

 Aor

The solution of the systems yields:

eigen-vectors  (related to the values of modal voltage in the grid nodes)

eigen-values  (related to the modal cutoff wave-numbers).

  0 IA 

NOTE: The solution of this problem can be based on a direct method: by

imposing |A-I|=0, a polynomial function in  is obtained, whose zeros

provide the eigen-values of the problem.
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