Lecture 7

THE METHOD OF MOMENTS (MoM)

Choice of the Basis Functions / 1

Ideally, the basis functions should represent a complete orthogonal base in the definition domain of the unknown function f.

$$
<f_{n}, f_{m}>=\int_{S} f_{n} \cdot f_{m}^{*} d S=\delta_{m n} \quad \forall m, n
$$

However, the determination of an orthogonal base is not an easy task, especially in the case of arbitrary domains.

From a practical point of view, the MoM results efficient when the basis functions exhibit a high degree of linear independency.

Choice of the Basis Functions / 2

The choice of the basis functions is based on various factors:

- Accuracy of the solution
- Easy computation of \mathbf{A} and \mathbf{B} matrix entries
- Size of matrix \mathbf{A} (number of needed functions)
- Condition number of matrix \mathbf{A}

Basis functions can be subdivided in two big classes:

- entire-domain basis functions (defined in the entire domain of functions f)
- sub-domain basis functions (defined in the small portion of the domain)

Examples of Basis Functions / 1

An example of entire-domain basis functions (in 1D case) is represented by sinusoidal functions.

$$
f_{n}=\left\{\begin{array}{c}
\sin (n x) \\
\cos (n x) \\
\exp (j n x)
\end{array}\right.
$$

Examples of Basis Functions / 2

The sub-domain basis functions exist only on one of the N non-overlapping segments into which the domain is divided. Examples of sub-domain basis functions (in 1D case) are:

- delta functions

$$
\mathrm{D}(x)=\delta\left(x-x_{0}\right)
$$

- piecewise constant functions

$$
\Pi\left(x, x_{1}, x_{2}\right)= \begin{cases}1 & x_{1} \leq x \leq x_{2} \\ 0 & \text { otherwise }\end{cases}
$$

- triangular functions

$$
\Lambda\left(x, x_{1}, x_{2}, x_{3}\right)= \begin{cases}\frac{x-x_{1}}{x_{2}-x_{1}} & x_{1} \leq x \leq x_{2} \\ \frac{x_{3}-x}{x_{3}-x_{2}} & x_{2} \leq x \leq x_{3} \\ 0 & \text { otherwise }\end{cases}
$$

- spline functions

Numerical Integration / 1

The integrals are typically computed in an approximate way, by using techniques for numerical integration (also called numerical quadrature).

$$
\int_{a}^{b} f(x) d x \cong \sum_{i=1}^{N} \omega_{i} f\left(x_{i}\right)
$$

where:
x_{i} represent the points where the function is computed
ω_{i} are the weights used to multiply the samples

Numerical Integration / 2

EULER'S RULE

Numerical Integration / 3

TRAPEZOIDAL RULE

$$
\int_{a}^{b} f(x) d x \cong \sum_{i=1}^{N} h\left[\frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2}\right]=\frac{h}{2} f\left(x_{0}\right)+\left[h \sum_{i=1}^{N-1} f\left(x_{i}\right)\right]+\frac{h}{2} f\left(x_{N}\right)
$$

Numerical Integration / 4

SIMPSON'S RULE

Simpson's rule gives a more accurate result than the trapezoidal rule, as the integrand function is approximated by a second-degree polynomial (i.e., a parabola) in each sub-interval.

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \cong \sum_{i=1}^{N} h\left[\frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}\right]= \\
& \quad=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+4 f\left(x_{N-2}\right)+2 f\left(x_{N-1}\right)+f\left(x_{N}\right)\right]
\end{aligned}
$$

where N is an even number.

Numerical Integration / 5

More sophisticated techniques are based on higher order polynomial interpolation: the integrand function is interpolated by using a polynomial, which is subsequently integrated analytically.

NEWTON-COTES RULES

- Equally spaced sample points
- Weights are computed in such a way, that the quadrature rule with N points exactly integrates polynomials with order $N-1$ (N weights represent N degrees of freedom)

GAUSSIAN RULES

- Sample points are not equally spaced
- Points and weights are computed in such a way, that the quadrature rule with N points exactly integrates polynomials with order $2 N-1$
(N points $+N$ weights represent $2 N$ degrees of freedom)

Numerical Integration / 6

Points and weights for Gaussian integration, in the normalized interval ($-1,1$)

rule	weights	points
2	$\omega_{1}=1.000000000$	$x_{1}=-0.577350269$
	$\omega_{2}=1.000000000$	$x_{2}=0.577350269$
3	$\omega_{1}=0.555555556$	$x_{1}=-0.774596669$
	$\omega_{2}=0.888888889$	$x_{2}=0.000000000$
	$\omega_{3}=0.555555556$	$x_{3}=0.774596669$
4	$\omega_{1}=0.347854845$	$x_{1}=-0.861136312$
	$\omega_{2}=0.652145155$	$x_{2}=-0.339981044$
	$\omega_{3}=0.652145155$	$x_{3}=0.339981044$
	$\omega_{4}=0.347854845$	$x_{4}=0.861136312$

Solution of a Linear System / 1

The solution of a set of simultaneous equations (linear system)

$\mathbf{A X}=\mathbf{B}$

can be based on:

- direct methods (Gauss's elimination method, LU decomposition), in the case of matrices with moderate size (up to 100x100).
- iterative methods, in the case of matrices with larger dimension.

Solution of a Linear System / 2

GAUSS'S ELIMINATION METHOD

By a number of transformations, matrix \mathbf{A} is converted into a triangular matrix.
The set of equations is then solved by back-substitution.

> computational effort

$\mathrm{O}\left(\mathrm{N}^{3}\right)$

Drawbacks of this method:

- the procedure to transform matrix \mathbf{A} into a triangular matrix changes also vector \mathbf{B} (therefore, if \mathbf{B} changes, the procedure has to be repeated).
- in some cases, a further re-ordering is needed (pivoting)

Solution of a Linear System / 3

LU DECOMPOSITION (CHOLESKY'S METHOD)

Through a number of transformations, which do not affect vector B, matrix \mathbf{A} is factorized in the form $\mathbf{A}=\mathbf{L} \mathbf{U}$, i.e., as the product of a lower triangular matrix (\mathbf{L}) and an upper triangular matrix (\mathbf{U}).

By replacing $\mathbf{A}=\mathbf{L U}$ in the matrix equation $\mathbf{A X}=\mathbf{B}$, it results: $\mathbf{L U X}=\mathbf{B}$. An auxiliary matrix \mathbf{Y} is defined, thus obtaining:

$$
\left\{\begin{array}{l}
\mathbf{U} \mathbf{X}=\mathbf{Y} \\
\mathbf{L} \mathbf{Y}=\mathbf{B}
\end{array}\right.
$$

The computational effort is $\mathrm{O}\left(N^{3}\right)$, but with a weight of $1 / 3$ compared to the Gauss's elimination method.

Solution of a Linear System / 4

ITERATIVE METHODS

Instead of solving directly the system of equations, a tentative solution \mathbf{X}_{0} is adopted, and iteratively updated according to the formula

$$
\mathbf{X}_{\mathrm{n}}=\mathbf{C} \mathbf{X}_{\mathrm{n}-1}+\mathbf{D} \quad(\mathrm{n}=1,2, \ldots)
$$

until the convergence is achieved, which is defined by $\left|\mathbf{X}_{\mathrm{n}}-\mathbf{X}_{\mathrm{n}-1}\right|<\varepsilon$

The convergence process can be improved by adopting a preconditioner
\mathbf{P}, thus solving the matrix equation

$$
\mathbf{P A X}=\mathbf{P} \mathbf{B}
$$

where \mathbf{P} is an approximation of the inverse of matrix $\mathbf{A}\left(\mathbf{P} \approx \mathbf{A}^{-1}\right)$

