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|deally, the basis functions should represent a complete orthogonal base
in the definition domain of the unknown function f.

<f,f >:Iﬁ'f;d525mn Y m.n
S

However, the determination of an orthogonal base is not an easy task,
especially in the case of arbitrary domains.

From a practical point of view, the MoM results efficient when the basis
functions exhibit a high degree of linear independency.
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CHOICE OF THE BASIS FUNCTIONS / 2

The choice of the basis functions is based on various factors:
« Accuracy of the solution

« Easy computation of A and B matrix entries

« Size of matrix A (number of needed functions)

« Condition number of matrix A

Basis functions can be subdivided in two big classes:
* entire-domain basis functions (defined in the entire domain of functions /)
« sub-domain basis functions (defined in the small portion of the domain)
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EXAMPLES OF BASIS FUNCTIONS / 1

An example of entire-domain basis functions (in 1D case) is represented
by sinusoidal functions.

[ sin(nx)
f, =< cos(nx)
exp(jnx) .
0 0.2 0.4
—f1
—f2
f3
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EXAMPLES OF BASIS FUNCTIONS / 2

The sub-domain basis functions exist only on one of the N non-overlapping
segments into which the domain is divided. Examples of sub-domain basis
functions (in 1D case) are:

e delta functions

A

: | D(x) = 0(x = x,)
>

1
I x<x<x,

H(x,xl,xz)z{

0 otherwise
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EXAMPLES OF BASIS FUNCTIONS / 3

* triangular functions

X—X
1

| A X <x<x,
Xy =X
Xy —X

_ )
. A(X,x(,X5,%5) =1 X, Sx <X
X F X X = X9 X =X3 .X(:;_.XQ th .
otherwise

* spline functions

| A
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NUMERICAL INTEGRATION / 1

The integrals are typically computed in an approximate way, by using
techniques for numerical integration (also called numerical quadrature).

Jfey =)o f(x)

where:
x; represent the points where the function is computed
are the weights used to multiply the samples

;
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NUMERICAL INTEGRATION / 2

EULER’'S RULE

X:

i X1 1 h |

Jfeyde=3n fx)=ny f(x)
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NUMERICAL INTEGRATION / 3

TRAPEZOIDAL RULE

N J(xi0)
J(x;) /x £(x)

Y\\/ B

X:

/

X

Xi+1 — h —

[ fxydx= Zh[f e (x")} =zf(xo)+{h Zﬂxi)}’;f(x]v)
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NUMERICAL INTEGRATION / 4

SIMPSON’S RULE

Simpson’s rule gives a more accurate result than the trapezoidal rule, as
the integrand function is approximated by a second-degree polynomial (i.e.,
a parabola) in each sub-interval.

z P0x) di = Z , [ﬂxi_l) + f(zxi>+ f(xm)} _

:g[f(xo)+4f(xl)+2f(x2)+4f()@)+---+4f (3 5)+ 2. oy )+ f ()]

where N is an even number.
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NUMERICAL INTEGRATION / 5

More sophisticated techniques are based on higher order polynomial
interpolation: the integrand function is interpolated by using a polynomial,
which is subsequently integrated analytically.

NEWTON-COTES RULES

« Equally spaced sample points

 Weights are computed in such a way, that the quadrature rule with N
points exactly integrates polynomials with order N-1
(N weights represent N degrees of freedom)

GAUSSIAN RULES

« Sample points are not equally spaced

« Points and weights are computed in such a way, that the quadrature rule
with N points exactly integrates polynomials with order 2N-1
(N points + N weights represent 2N degrees of freedom)
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NUMERICAL INTEGRATION / 6

Points and weights for Gaussian integration, in the normalized
interval (-1,1)

rule weights points
5 o, = 1.000000000 x, =-0.577350269
o, = 1.000000000 x, = 0.577350269
o, = 0.555555556 x, =-0.774596669
3 o, = 0.888888889 x, = 0.000000000
o, = 0.555555556 x5 = 0.774596669
o, = 0.347854845 x, =-0.861136312
4 o, = 0.652145155 x, =-0.339981044
o0, = 0.652145155 x5 = 0.339981044

0.861136312

w, = 0.347854845 x4
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SOLUTION OF A LINEAR SYSTEM / 1

The solution of a set of simultaneous equations (linear system)

AX=B
can be based on:

* direct methods (Gauss’s elimination method, LU decomposition),
in the case of matrices with moderate size (up to 100x100).

* iterative methods, in the case of matrices with larger dimension.
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SOLUTION OF A LINEAR SYSTEM / 2

GAUSS'’S ELIMINATION METHOD

By a number of transformations, matrix A is converted into a triangular
matrix.
The set of equations is then solved by back-substitution.

computational effort Im——> QO(N3)

Drawbacks of this method:

 the procedure to transform matrix A into a triangular matrix changes
also vector B (therefore, if B changes, the procedure has to be repeated).

* in some cases, a further re-ordering is needed (pivoting)
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SOLUTION OF A LINEAR SYSTEM / 3

LU DECOMPOSITION (CHOLESKY'S METHOD)

Through a number of transformations, which do not affect vector B, matrix
A is factorized in the form A=LU, i.e., as the product of a lower triangular
matrix (L) and an upper triangular matrix (U).

By replacing A=LU in the matrix equation AX=B, it results: LUX=B.
An auxiliary matrix Y is defined, thus obtaining:

UX=Y
LY=B

The computational effort is O(N3), but with a weight of 1/3 compared to
the Gauss'’s elimination method.
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SOLUTION OF A LINEAR SYSTEM / 4

ITERATIVE METHODS

Instead of solving directly the system of equations, a tentative solution X,
is adopted, and iteratively updated according to the formula

X =CX_,+D n=12,..)
until the convergence is achieved, which is defined by \Xn - X <€

The convergence process can be improved by adopting a preconditioner
P, thus solving the matrix equation

PAX=PB

where P is an approximation of the inverse of matrix A (P~ A™)

Computational Electromagnetics Prof. Maurizio Bozzi MoM /2 — page 16



