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Ideally, the basis functions should represent a complete orthogonal base

in the definition domain of the unknown function f.

However, the determination of an orthogonal base is not an easy task,

especially in the case of arbitrary domains.

From a practical point of view, the MoM results efficient when the basis

functions exhibit a high degree of linear independency.
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The choice of the basis functions is based on various factors:

• Accuracy of the solution

• Easy computation of A and B matrix entries

• Size of matrix A (number of needed functions)

• Condition number of matrix A

Basis functions can be subdivided in two big classes: 

• entire-domain basis functions (defined in the entire domain of functions f)

• sub-domain basis functions (defined in the small portion of the domain)

CHOICE OF THE BASIS FUNCTIONS / 2
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An example of entire-domain basis functions (in 1D case) is represented

by sinusoidal functions.
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The sub-domain basis functions exist only on one of the N non-overlapping 

segments into which the domain is divided. Examples of sub-domain basis 

functions  (in 1D case) are:
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• triangular functions

• spline functions
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The integrals are typically computed in an approximate way, by using

techniques for numerical integration (also called numerical quadrature).
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where:

xi represent the points where the function is computed

i are the weights used to multiply the samples

NUMERICAL INTEGRATION / 1
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EULER’S RULE
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TRAPEZOIDAL RULE
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SIMPSON’S RULE
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Simpson’s rule gives a more accurate result than the trapezoidal rule, as

the integrand function is approximated by a second-degree polynomial (i.e.,

a parabola) in each sub-interval.

where N is an even number.

NUMERICAL INTEGRATION / 4
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NEWTON-COTES RULES

• Equally spaced sample points

• Weights are computed in such a way, that the quadrature rule with N

points exactly integrates polynomials with order N-1

(N weights represent N degrees of freedom)

GAUSSIAN RULES

• Sample points are not equally spaced

• Points and weights are computed in such a way, that the quadrature rule

with N points exactly integrates polynomials with order 2N-1

(N points + N weights represent 2N degrees of freedom)

More sophisticated techniques are based on higher order polynomial

interpolation: the integrand function is interpolated by using a polynomial,

which is subsequently integrated analytically.

NUMERICAL INTEGRATION / 5
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rule weights points

2
1 = 1.000000000

2 = 1.000000000

x1 = -0.577350269

x2 =  0.577350269

3

1 = 0.555555556

2 = 0.888888889

3 = 0.555555556

x1 = -0.774596669

x2 =  0.000000000

x3 =  0.774596669

4

1 = 0.347854845

2 = 0.652145155

3 = 0.652145155

4 = 0.347854845

x1 = -0.861136312

x2 = -0.339981044

x3 = 0.339981044

x4 = 0.861136312

Points and weights for Gaussian integration, in the normalized 

interval (-1,1)

NUMERICAL INTEGRATION / 6
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The solution of a set of simultaneous equations (linear system) 

can be based on:

• direct methods (Gauss’s elimination method, LU decomposition), 

in the case of matrices with moderate size (up to 100x100).

• iterative methods, in the case of matrices with larger dimension.

BX A   

SOLUTION OF A LINEAR SYSTEM / 1
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GAUSS’S ELIMINATION METHOD

computational effort                            O(N3)

Drawbacks of this method:

• the procedure to transform matrix A into a triangular matrix changes

also vector B (therefore, if B changes, the procedure has to be repeated).

• in some cases, a further re-ordering is needed (pivoting)

SOLUTION OF A LINEAR SYSTEM / 2

By a number of transformations, matrix A is converted into a triangular

matrix.

The set of equations is then solved by back-substitution.
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LU DECOMPOSITION (CHOLESKY’S METHOD)

Through a number of transformations, which do not affect vector B, matrix

A is factorized in the form A=LU, i.e., as the product of a lower triangular

matrix (L) and an upper triangular matrix (U).

The computational effort is O(N3), but with a weight of 1/3 compared to

the Gauss’s elimination method.

By replacing A=LU in the matrix equation AX=B, it results: LUX=B.

An auxiliary matrix Y is defined, thus obtaining:
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SOLUTION OF A LINEAR SYSTEM / 3
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ITERATIVE METHODS

1,2,...)(n              1-nn  DXC X

until the convergence is achieved, which is defined by     1-nn XX

The convergence process can be improved by adopting a preconditioner

P, thus solving the matrix equation

BPX A P    

where P is an approximation of the inverse of matrix A )( 1-
A  P 

SOLUTION OF A LINEAR SYSTEM / 4

Instead of solving directly the system of equations, a tentative solution X0

is adopted, and iteratively updated according to the formula


