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The boundary-element method (BEM) is an efficient numerical technique,

adopted for the solution of large classes electromagnetic problems.

The BEM is based on the formulation of the problem in terms of

an integral equation, which is solved by the Method of Moments

(MoM).

It is typically formulated in the frequency domain, and it can be

applied to either closed or open problems, typically filled with a

homogeneous or stratified dielectric medium.

The BEM is based on the formulation of the problem in terms of

an integral equation, which is solved by the Method of Moments

(MoM).

It is typically formulated in the frequency domain, and it can be

applied to either closed or open problems, typically filled with a

homogeneous or stratified dielectric medium.

Different names are sometimes adopted for the BEM:

 Integral Equation Method (IEM)

 Boundary Integral Method (BIM)

 Method of Moments (MoM)

INTRODUCTION
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The BEM permits to reduce the dimensionality of the problem,

because the unknown function is defined on the discontinuities only.

FDTD segmentation FEM segmentation BEM segmentation

The unknown function is typically a current density, related to the fields

through the Green’s function. In the case of open problems, the radiation

condition is included in the Green’s function (no ABC or PML required).

Reference books:

1. R. F. Harrington, Field Computation by Moment Methods, IEEE Press, 1993.

2. W. C. Chew et al., Integral Equation Methods for Electromagnetics and Elastic Waves,

Morgan & Claypool Publishers, 2008.

INTRODUCTION
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The equivalent field theorem says that actual sources (such as an antenna

or a scatterer) can be replaced by equivalent sources which produce the

same field within a region.
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actual problem equivalent problem

The equivalent current densities are:

EQUIVALENCE THEOREM
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EXAMPLE

 
S
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where G is the Green’s function the electric

current density to the electric field. E0(r)

J(r')

z

S

Let us consider a conductive cylinder illuminated by a known incident

electric field E0 (excitation of the system). The scattered field Escat is the

effect of an equivalent current density J (problem unknown), on the surface

of S of the cylinder, expressed through a Green’s integral:

The integral equation is obtained by imposing

the electric wall condition on the surface S of

the metal cylinder.
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Green’s function G(r,r') represents the response in a point r (field point)

determined by a point source located in r' (source point).

point source

f (r') = d (r – r')

resulting field

u (r) = G (r,r')
0

u (r)

f (r')

G(r,r')

PHYSICAL DEFINITION

r

r'

GREEN’S FUNCTION / 1
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If the source point is replaced by a distributed source, the resulting field is

the obtained by superimposing the point source responses.
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If the source is f (r') = d (r – r'), it is straightforward to show that
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u (r)

f (r')

G(r,r')
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GREEN’S FUNCTION / 2
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The Green’s function G(r,r') provides a systematic technique to transform

an differential problem into an integral problem.

Let us consider the problem

  )()( rr fuL 

where 

L is a linear differential operator

u (r) is the unknown function

f (r) is a given function (that represents the excitation).

MATHEMATICAL DEFINITION

GREEN’S FUNCTION / 3
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 )()( 1
rr fLu 

The unknown function u (r) can be formally expressed as

where L-1 represents the inverse of operator L. 

Since L is differential, its inverse operator L-1 is an integral operator

where G(r,r') is the Green’s function associated to operator L.
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GREEN’S FUNCTION / 4
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PROPERTIES OF THE GREEN’S FUNCTION

  )'()',( rrrr  dGL

where d (r–r') represents the delta function.

1. The Green’s function G(r,r') satisfies the relation:

2. The Green’s function G(r,r') is symmetric, so that:

),'()',( rrrr GG 

3. The Green’s function G(r,r') satisfies the boundary conditions of the

associated linear operator L for function u (r).

4. The partial derivative G/n is discontinuous in r':

1lim
0
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GENERAL OBSERVATIONS:

Each Green’s function is associated to a given differential equation with its

boundary conditions.

The determination of the Green’s function sometimes requires a significant

effort, especially for its derivation in closed form or in the form of a rapidly

converging series.

Some electromagnetic problems can be formulated in terms of scalar

Green’s functions, other problems require the use of dyadic Green’s

functions.

PROPERTIES OF THE GREEN’S FUNCTION
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We calculate the Greens’ function associated to the following partial

differential equation:

It is usually convenient to represent the Green’s function G(r,r') as the sum

of two terms:

The Green’s function G(r,r') must satisfy the relation:

)'()',(2
rrrr  dG (boundary condition G=f )
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Function F is denoted as the free space Green’s function.

Function U is selected to satisfy the boundary condition U=f –F.

g2 (boundary condition =f )

FREE SPACE GREEN’S FUNCTION / 1
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The Green’s function G (x,y,x',y') satisfies the relation:

2D CASE

)'( )'()',',,(2 yyxxyxyxG  dd
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The 2D Laplace operator is

Therefore, function F (x,y,x',y') must satisfy the same relation:

)'( )'()',',,(2 yyxxyxyxF  dd

In polar coordinates, for , it results:0)'()'( 22  yyxx
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FREE SPACE GREEN’S FUNCTION / 2
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After integrating twice, it gives:

BAF  ln 

Applying the 4th property of the Green’s functions

12 limlim

2
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00
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thus resulting A=1/2. Since B is arbitrary, we may choose B=0. Thus
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And finally:

We choose U so that G satisfies prescribed boundary conditions.
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FREE SPACE GREEN’S FUNCTION / 3
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3D CASE
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The 3D Laplace operator is
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FREE SPACE GREEN’S FUNCTION / 4

The Green’s function G (x,y,x',y') satisfies the relation:

Therefore, function F (x,y,x',y') must satisfy the same relation:

In spherical coordinates, for
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FREE SPACE GREEN’S FUNCTION / 5

After integrating twice, it gives:

Applying the 4th property of the Green’s functions

thus resulting A=1/4. Since B is arbitrary, we may choose B=0. Thus

And finally:

We choose U so that G satisfies prescribed boundary conditions.
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To illustrate the eigenfunction expansion procedure, we consider the

Green’s function for the wave equation

0ΨΨ 22  k (boundary condition Y=0 or )0
Ψ






n

The eigenfunction expansion is a technique for the analytical determination

of the Green’s function in domains with conducting boundaries, for

differential equations whose homogeneous solution is known.

The eigenfunctions and eigenvalues {Yj,kj} of this problem satisfy

0ΨΨ j

2

jj

2  k (boundary condition Yj=0 or )0
Ψ j
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and form a complete set of orthonormal functions:








 ji if  0

ji if  1
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GF FOR CLOSED DOMAINS / 1
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The Green’s function can be expanded in terms of eigenfunctions Yj:
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Since the Green’s function must satisfy
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GF FOR CLOSED DOMAINS / 2
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Multiplying both sides by Yi
* and integrating over the region S gives
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Imposing the orthonormal property or eigenfunctions leads to
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The Green’s functions results:
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The Green’s functions considered so far can be adopted for the solution of

electromagnetic problems described by scalar partial differential

equations.

In the case of vector equations (e.g.., vector wave equation)

Dyadic Green’s functions are needed:

  )()( rFrU L
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DYADIC GREEN’S FUNCTION / 1
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In a Cartesian coordinate system, the dyadic Green’s function can be

expressed as

'''''''''       
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The dot product between a dyadic function and a vector returns a vector:
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DYADIC GREEN’S FUNCTION / 2
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The free space scalar Green’s function, associated to the wave equation
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Therefore, the vector potential A is given by:
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The electric field E can be expressed in terms of the vector potential A

is given by
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DYADIC GREEN’S FUNCTION / 3
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By using the property , it results that:BBB  aaa  ) (

It finally results:

Moreover, by applying the relation:

where G0(r,r') is the dyadic free space Green’s function.
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DYADIC GREEN’S FUNCTION / 4


