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Matrix  Methods for Field Problems 
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wbkbthefmctiodeqPPtioofoffieldtheoryarerehcedtomatrixequa- 
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to objects of prbitruy geometry and a r b i i  material. 

I. INTRODUCTION 

T HE USE of high-speed digital computers not only 
allows one to make more computations than ever 
before, it makes practicable methods too repetitious 

for hand  computation.  In  the past much  effort  was  ex- 
pended to analytically manipulate solutions into  a form 
which  minimized the  computational effort. It is  now often 
more convenient to use computer time to reduce the analyti- 
cal effort. Almost any linear problem of analysis can be 
solved to some degree  of approximation, depending upon 
the ingenuity and effort expended. In other words, the 
methods are known, but much work remains to be done  on 
the details. 

It is the purpose of this paper to give a brief discussion of a 
general procedure for solving linear field problems, and to 
apply it to some examples of  engineering interest. The pro- 
cedure is  called a matrix  method because it reduces the 
original functional equation  to  a matrix equation. The name 
method of moments has been  given to the mathematical 
procedure for obtaining the matrix equations. Sometimes 
the procedure is  called an approximation technique, but 
this is a misnomer when the solution convergesin the limit. 
It is  only the computational time for a given accuracy which 
differs from other solutions, as, for example, an infinite 
power series. Of course, the method can also be  used for 
truly approximate solutions, that is, ones which do not 
converge in the limit. 

The mathematical concepts are conveniently discussed in 
the language of linear spaces and  operators. However, an 
attempt has been made to minimize the use  of this language, 
so that readers unfamiliar with  it  may better follow the 
discussion. Those concepts which are used are defined as 
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they are  introduced. Detailed expositions of linear spaces 
and  operators may be found in many textbooks [1)-[3]. 

In this paper, only equations of the inhomogeneous type 

L O = g  (1) 
will be considered. Here L is a linear operator, g is the 
excitation or source (known function), and f is thefield  or 
response (unknown to be determined). The problem is  said 
to be deterministic if the solution is unique, that is,  if  only 
one f is associated with each g .  The problem of analysis 
involves determining f when L and g are given. The prob- 
lem  of synthesis involves determining L when f and g are 
specified. This paper deals only with  analysis. 

The method of moments gives a general procedure for 
treating field problems, but the details of solution vary 
widely  with the particular problem. The examples  of this 
paper have  been chosen not only  because they illustrate 
these details, but also because they are problems of engi- 
neering interest. It is hoped that these examples  will  allow 
the reader to solve similar problems, and also will suggest 
extensions and modifications suitable for other types of 
problems. While the examples are all taken from electro- 
magnetic theory, the procedures apply to field problems of 
all kinds. 

11. FORMULATION OF PROBLEMS 

Given a deterministic problem of the form (l), it is de- 
sired to identify the  operator L ,  its domain (the functions f 
on which it operates), and its range (the functionsg resulting 
from the operation).  Furthermore, one usually  needs an 
inner product u, g ) ,  which  is a scalar defined to satisfy' 

(f, s> = ( s , f )  (2) 
(af + Bs, h )  = .(f; h )  + B(s, h )  (3) 

(4) (f*,f> > 0, iff # 0 
= 0, i f f=O 

where a and j3 are scalars, and * denotes complex conjugate. 
The norm of a function is denoted / I  f 11 and defined by 

11 f 11 = d m .  ( 5 )  

It corresponds to the Euclidean vector concept of length. 
The metric d of two functions is 

4f; 9) = Ilf - SI1 (6) 

' The usual  definition of inner  product  in  Hilbert  space  corresponds to 
(f, g )  in  our notation. For  this paper it is  more  convenient to show  the 
conjugate  operation  explicitly  wherever it occurs, and  to  define  the  adjoint 
operator  without conjugation. 
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and corresponds to the Euclidean vector concept of dis- 
tance between  two points. It is important for discussing the 
convergence of solutions. 

Properties of the solution of ( 1 )  depend on properties of 
the operator L .  The adjoint  operator E and its domain are 
defined by 

(LL g> = (f, L“g> (7) 

for  all f in the domain of L .  An operator is self adjoint if 
E= L and  the domain of E is that of L .  An operator is real 
if Lfis  real wheneverfis real. An operator is positive definite 
if 

<f*, L f >  ’ 0 (8) 
for  all f # O  in its domain. It is positice semidefinite if > is 
replaced by 2 in (8), negative deJinite if > is replaced by < 
in (8), etc.  Other properties of operators will  be identified as 
they are needed. 

If the solution to L(f)=g exists and is unique for  all g, 
then the inverse operator L- exists  such that 

f = L-’(g). (9) 

If g is known, then (9) represents the solution to the original 
problem. However, (9) is  itself an inhomogeneous equation 
for g iff is known, and its solution is L ( f ) = g .  Hence, L 
and L- form a pair of operators, each of which  is the in- 
verse of the  other. 

Facility in formulating problems using the concepts of 
linear spaces comes  only  with practice, which  will be pro- 
vided  by the examples in later sections. For the present, a 
simple abstract example will be considered, so that mathe- 
matical concepts may  be illustrated without bringing phys- 
ical concepts into the picture. 

Example: Given g(x),  find f ( x )  in the interval O<x< 1 
satisfying 

and 

This is a  boundary value problem for  which 

The range of L is the space of all functions g in the interval 
0 1  x I 1 which are being considered. The domain of L is 
the space of those functions f in the interval 0 I x I 1 ,  satis- 
fying the boundary conditions ( l l ) ,  and having second 
derivatives in the range of L .  The solution to (10) is not 
unique unless appropriate boundary conditions are in- 
cluded. In other words, both the differential operator and 
its domain are required to define the  operator. 

A suitable inner product for this problem is 

It is easily shown that (13) satisfies the postulates (2) to (4), 
as required. Note  that the definition (13) is not unique. For 
example, 

J ~ d x U ( x k ( . )  dx (14) 

where w(x)>O is an arbitrary weighting function, is also 
an acceptable inner product. However, the adjoint operator 
depends on  the inner product,  and it can often be chosen to 
make the  operator self adjoint. 

To find the adjoint of a differential operator, form the 
left-hand side of (7), and integrate by parts to obtain the 
right-hand side. For the present problem 

The last terms are boundary terms, and the domain of E 
may be chosen so that these vanish. The first boundary 
terms vanish by (1 l), and  the second vanish if 

g(0) = g(1) = 0. (16) 

It is then evident that the adjoint operator  to (12) for the 
inner product (1 3) is 

Since E =  L  and  the  domain of E is the same as that of L, 
the  operator is self adjoint. 

It is also evident that  L is a real operator, since Lf is  real 
whenfis real. That  Lis a positive  definite operator is  shown 
from (8) as follows : 

Note  that L is a positive definite operator even i f f  is 
complex. 

The inverse operator  to L can be obtained by standard 
Green’s function techniques2 It is 

L- ‘(9) = G(x, x’)g(X’)  dx’ J: (19) 

where G is the Green’s function 

’ See, for example,  Friedman [2], ch. 3. 
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One can verify that (19) is the inverse operator by forming 
f= L- ' ( g ) ,  differentiating twice, and obtaining (10). Note 
that no boundary conditions are needed on the domain of 
L- l ,  which  is characteristic of most integral operators.  That 
L- ' is  self adjoint follows from the proof that L is  self ad- 
joint, since 

(Lfl, fi) = (919 L-'gz). (21) 
Of course, the self-adjointness of L -  ' can also be proved 
directly. It similarly  follows that L-' is  positive  definite 
whenever L is positive definite, and vice  versa. 

111. METHOD OF MOMENTS 
A general procedure for solving linear equations is the 

method of moments [4]. Consider the deterministic equation 

where L is a linear operator, g  is known, and f is to be 
determined. Let f be expanded in a series of functions 
f l , f2 , f3 ,  . . . in the domain of L,  as 

where the a, are constants. Thef, are called expansionfunc- 
tions or basis functions. For exact solutions, (23) is  usually 
an infinite summation and the fn form a complete set of 
basis functions. For approximate solutions, (23) is  usually a 
finite summation. Substituting (23) into (22), and using the 
linearity of L,  one has 

It is  assumed that  a suitable inner product (f, g) has been 
determined for the problem. Now  define a set of weighting 
functions, or testing functions, wl, w2,  wj, . . . in the range 
of L,  and take the inner product of (24) with  each w,. The 
result  is 

1 an(wrn, L f n )  = (wm? 9 )  (25) 
n 

m= 1, 2, 3, . . . . This set of equations can be written in 
matrix form as 

[1mnlCanl = [gml (26) 

where 

i [Ll = (WZ? Lfl) <W2? J Y - 2 )  . . . ] (27) 
(w19 Lfl) (w13 Lf2) . . . 

. . . . . . . . . . . . . . .  

(w19 g> 
[an] = [ !I [gml =kK12;  g)] . (28) 

If the matrix [ I ]  is nonsingular its inverse [ I -  '3 exists. The 
a, are then given by 

[an] = [ L 1 l [ ~ m l  (29) 

and  the solution forf  is  given by (23). For concise expression 
of this result, define the matrix of functions 

[fl = [fl 1 2  f 3  . ' . .I (30) 

f = [j.,I[anl = [LI[LAI[gmI. (31) 

and write 

This solution may be exact or approximate, depending upon 
the choice of thef, and w,. The particular choice w,=f, is 
known as Galerkin's  method [ 5 ] ,  [6]. 

If the matrix [ l ]  is of idni te  order, it can be inverted only 
in special  cases, for example, if it  is diagonal. The classical 
eigenfunction method leads to a diagonal matrix, and can 
be thought of as  a special case of the method of moments. 
If the setsf, and w, are finite, the matrix is  of finite order,  and 
can be inverted by known computational algorithms. 

One of the main tasks in any  particular problem is the 
choice of the f, and w,. The f, should be  linearly inde- 
pendent and chosen so that some superposition (23) can 
approximate f reasonably well. The w, should also be 
linearly independent and chosen so that the products 
(w,, g )  depend on relatively independent properties of g. 
Some additional factors which  affect the choice off, and w, 
are  a) the accuracy of solution desired, b) the ease of evalua- 
tion of the matrix elements, c) the size  of the matrix that can 
be inverted, and  d)  the realization of a well-conditioned 
matrix [ I ] .  

Example: Consider again the problem stated by  (10) and 
(1 1). For a power-series solution, choose 

f, = X"+' - x  (32) 

n =  1,2; 3, . . . , N ,  so that the series (23) is 

N 

f = 1 a,(x"+' - x).  (33) 
n =  1 

Note  that the term - x  is  needed  in (34), else the f. will not 
be in the domain of L, that is, the boundary conditions will 
not be satisfied. For testing functions, choose 

w, = fn = X " +  1 - x (34) 

in  which  case the method is that of Galerkin. In Section V 
it is shown that the w, should be in the domain of the adjoint 
operator. Since L is self adjoint for this problem, the w, 
should be in the domain of L, as are those of (34). Evaluation 
of the matrix (27) for the inner product (13) and L given  by 
(12) is straightforward. The resultant elements are 

(35) 

A knowledge of the matrix elements (35) is  fully equivalent 
to the original differential equation. Hence, a matrix formu- 
lation for the problem has been obtained.  For any particular 
excitation g ,  the matrix excitation [g,] has elements given 
by 

g, = (w,, 9 )  = X M X )  dx (36) 



1967 HARRINGTON: MATRIX METHODS FOR FIELD PROBLEMS 139 

and  a solution to  the  boundary value problem is  given by 
(31). This solution is a power series,  exact iff can be ex- 
pressed as  a power series. In general, it  is an infinite power- 
series solution, in which  case a finite number of terms gives 
an approximate solution. The  nature of the approximation 
is  discussed  in Section V. 

IV. SPECIAL TECHNIQUES 
As long as the operator  equation is simple, application of 

the method of moments gives solutions in a straight- 
forward manner. However, most field problems of  engi- 
neering interest are  not so simple. The physical problem may 
be represented by many different operator equations, and  a 
suitable one must be chosen. Even then the form of L may be 
very complicated. There are  an infinite number of sets of 
expansion functions f, and testing functions M’, that may  be 
chosen. Finally, there are mathematical approximations 
that  can be made in the evaluation of the matrix elements of 
I,, and g,. In this section a number of special techniques, 
helpful for overcoming some of these  difficulties, will be 
discussed  in  general terms. Some of  these concepts will be 
used in  the electromagnetic field problems considered later. 

Point-Matching: The integration involved in evaluating 
the I,,,= (M’,,,, Lf,) of (27) is often difficult to perform in 
problems of practical interest. A simple  way to  obtain 
approximate solutions is to require that (24) be  satisfied at 
discrete points in the region of interest. This procedure is 
called a point-matching  method. In terms of the method of 
moments, it  is equivalent to using Dirac delta functions as 
testing functions. 

Subsectional Bases: Another approximation useful for 
practical problems is the method of subsections. This in- 
volves the use  of basis functionsf, each of which  exists  only 
over subsections of the domain  off. Then each a, of the ex- 
pansion (23) affects the approximation offonly over a sub- 
section of the region of interest. This procedure often 
simplifies the evaluation and/or the form of the matrix [I]. 
Sometimes it is convenient to use the point-matchmg 
method of the preceding section in conjunction with the 
subsection method. 

Extended  Operators: As noted earlier, an  operator is de- 
fined  by an operation (for example, L = - dz/dx2) plus a  do- 
main (space of functions to which the operation may be 
applied). We can extend the domain of an  operator by  re- 
defining the operation  to apply to new functions (not in the 
original domain) so long as this extended operation does 
not change the original operation in  its domain. If the 
original operator is  self adjoint, it  is desirable to make the 
extended operator also self adjoint. By this procedure we 
can use a wider  class of functions for solution by the method 
of moments. This becomes particularly important in multi- 
variable problems (fields  in multidimensional space) where 
it is not always easy to find simple functions in the domain 
of the original operator. 

Approximate  Operators: In complex problems it  is some- 
times convenient to approximate the operator to obtain 
solutions. For differential operators, the finite  difference 
approximation has been  widely  used [7]. For integral opera- 

tors, an approximate  operator can be obtained by approxi- 
mating the kernel of the integral operator [ 5 ] .  Any method 
whereby a functional equation is  reduced to  a matrix equa- 
tion can be interpreted in terms of the method of moments. 
Hence, for  any matrix solution using approximation of the 
operator  there will be a corresponding moment solution 
using approximation of the function. 

Perturbation  Solutions: Sometimes the problem under 
consideration is only slightly  different (perturbed) from a 
problem which can be solved  exactly (the unperturbed 
problem). A first-order solution to the perturbed problem 
can then be obtained by using the solution to  the unper- 
turbed problem as a basis for the method of moments. This 
procedure is called a perturbation  method. Higher-order 
perturbation solutions can be obtained by using the unper- 
turbed solution plus correction terms in the method of 
moments. Sometimes this is done as successive approxima- 
tions by including one correction term at a time, but for 
machine computations it is usually easier to include all 
correction terms at once. 

V. VARIATIONAL INTERPRETATION 
It is known that Galerkin’s method (tt,, = f )  is equivalent 

to  the Rayleigh-Ritz variational method [ 5 ] ,  [6 ] .  The 
method of moments is also equivalent to the variational 
method, the  proof being  essentially the same as that  for 
Galerkin’s method. The application of these techniques to 
electromagnetic field problems is known as the reaction 
concept [8], [9]. 

An interpretation of the method of moments in terms of 
linear spaces will first be given.  Let s (Lf) denote the range 
of L, S (Lf.) denote  the space spanned by the Lf,  and S (w,) 
denote  the space spanned by the w,. The method of moments 
(25) then equates the projection of Lf onto S (M’,) to the pro- 
jection of the  approximate Lfonto S (w,). In other words, 
both  the  approximate Lf and the exact Lf have equal com- 
ponents in S (WJ. The difference  between the approximate 
Lf and  the exact Lf is the  error, which  is orthogonal to 
s (w,). Because of this orthogonality, a first-order change in 
the projection produces only a second-order change in the 
error. In Galerkin’s method, S (M’,)= S cf,), and the dis- 
tance from  the  approximate Lf to the exact Lf is  minimized. 
In general, the method of moments does not minimize the 
distance from the  approximatefto the exact A although it 
may in some special  cases. 

The variational approach to the same problem is as 
follows. Given an operator  equation Lf=g,  it  is  desired to 
determine a functional off(number depending onf) 

P ( f )  =-(.L h )  (37) 

where h is a given function. If h is a continuous function, 
then p( f) is a continuous linear functional. Now  let E be the 
adjoint  operator to L  and define an adjoint function f” 
(adjoint field)  by 

Lap = h. (38) 
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By the calculus of variations, it  can then be shown that [6] 

(39) 

is a variational formula for p with stationary point (37) when 
f is the solution of  Lf= g and f “ the solution to (38). For  an 
approximate evaluation of p ,  let 

n rn 

Substitute these into (39), and apply the Rayleigh-Ritz 
conditions Bplaa, = dp/2Bi = 0 for all i. The result  is that the 
necessary and sufficient conditions for p to be a  stationary 
point are (25), [6]. Hence, the method of moments is 
identical to the Rayleigh-Ritz variational method. Some- 
times the method of moments is  called a direct method, in 
contrast to variational approaches which are often rather 
circuitous. 

The above variational interpretation can be  used to give 
additional insight in  how to choose the testing functions. 
It is evident from (38) and (40) that the w n  should be chosen 
so that some linear combination of  them can closely  rep- 
resent the  adjoint field?. When we calculatefitself by the 
method of moments, h of (37) is a Dirac delta function, p of 
(37) is no longer a  continuous linear functional, and f” of 
(38) is a Green’s function. This implies that some combina- 
tion of the wn must  be able  to approximate the Green’s func- 
tion. Since a Green’s function is  usually poorly behaved, 
one should expect computation of a field  by the method 
of moments to converge less  slowly than  computation  of  a 
continuous linear functional. This is found to be the case. 

VI. ELECTROSTATICS 
This section  is a general discussion of electrostatic prob- 

lems according to  the operational formulation. The static 
electric intensity E is conveniently found from an electro- 
static potential 4 according to 

where V is the gradient operator. In a region of constant 
permittivity E and volume change density p ,  the electro- 
static potential satisfies the Poisson equation 

-&V24 = p (42) 

where V2 is the Laplacian operator.  For unique solutions, 
boundary conditions on 4 are needed. In other words, the 
domain of the operator must be specified. 

For now, consider fields  from charges in unbounded 
space, in which  case 

rcp + constant as r + so (43) 

for  every p of finite extent, where r is the distance from the 
coordinate origin. The differential operator formulation is 
therefore 

where 

L = - &V2 (45) 

and the domain of L is those functions 4 whose Laplacian 
exists and which have r 4  bounded at infinity according to 
(43). The well-known solution to this problem is 

where R = , / ( x  - x ’ ) ~  + (y - y’)’ + (z  - z’)2 is the distance 
from a source point (x’,   y’,   z’) to  a field point (x ,   y ,   z ) .  Hence, 
the inverse operator  to Lis 

e e e  

L- ’ = J J J dx‘dy’dz‘ -. 1 
4mR (47) 

It is important  to keep in mind that (47) is  inverse to (45) 
only for the boundary conditions (43). If the boundary con- 
ditions are changed, L- ’ changes. Also, the designation of 
(45) as L and (47) as L- ’ is arbitrary,  and the notation could 
be reversed if desired. 

A suitable inner product  for electrostatic problems is 
L L L  

where the integration is  over  all space. That (48) satisfies the 
required postulates (2),  (3), and (4) is  easily  verified. It will 
now  be shown that L is self adjoint for this inner product. 
From the left-hand side of (7) 

where dr = dxdydz. Green’s identity is 

where S is the surface bounding the volume V and n is the 
outward direction normal to S .  Let S be a sphere of radius r, 
so that in the limit r+m the volume V includes all space. 
For 4 and II/ satisfying boundary conditions (43), $+Cl/r, 
and a+/an+c2/r2 as r+m. Hence, $a4/an+C/r3 as r+m, 
and similarly for 48 $ / a n .  Since ds = r2 sin 0 d6d4  increases 
only as r2,  the right-hand side of (50) vanishes as r+m.  
Equation (50) then reduces to 

from which  it  is evident that  the adjoint operator L“ is 

Since the domain of L“ is that of L, the operator L is self 
adjoint. The concept of  self adjointness in this case  is related 
to the physical concept of reciprocity. 

It is evident from (45) and (47) that L and L-’ are real 
operators.  It will  now be shown that they are also positive 
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definite, that is, t h y  satisfy (8). As discussed  in Section 11, 
this need  be shown only  for L or L-’. For L,  form 

(4*? L 4 )  = l j S m ’ c - E V ’ O ) d T  (53) 

and use the vector identity q5V2q5 = V . (q5V4) - V 4 .  V 4  plus 
the divergence theorem. The result is 

(I$*, L 4 )  = Jjj;Vq5*. Vq5 dr - f iS  ~q5*Vq5. ds (54) 

where S bounds V .  Again take S a sphere of radius r .  For 4 
satisfying (43), the last term of (54) vanishes as r+m for the 
same reasons as in (50). Then 

(4*? Lq5) =jJj EIVq5I2 dr (55) 

and, for E real and E>O,  L is  positive definite. In this case 
positive  definiteness of L is related to the concept of electro- 
static energy. 

VII. CHARGED CONDUCTING PLATE 
Consider a  square conducting plate 2a meters on  a side 

and lying on the z=O plane with center at the origin, as 
shown in Fig. 1. Let a(x, y )  represent the surface charge 
density on the plate, assumed to have zero thickness. The 
electrostatic potential at any point in space  is 

where R = ,/G - x’)’ + (y  - y’)’ + z 2 .  The boundary condi- 
tion is 4 = V (constant) on the pIate. The integral equation 
for the problem is therefore 

1x1 <a, ly( <a. The unknown to be determined is the charge 
density a ( x ,   y ) .  A parameter of interest is the capacitance of 
the plate 

which  is continuous linear functional of a. 
A straightforward development of a subsection and point- 

matching solution [lo] will first  be  given, and later it will 
be interpreted in terms of more general concepts. Consider 
the plate divided into N square subsections, as shown in 
Fig. 1 .  Define functions 

0 on all other As,,, 

and let the charge density be represented by 
N 

~ ( x ,  Y )  X E X .  
n =  1 

Z 

Fig. 1.  A square conducting  plate. 

Substituting (60) into (57) and satisfying the resultant equa- 
tion at the midpoint (x,,,, y,) of each As,,,, one obtains the 
set of equations 

N 
V =  1 Imam m = 1 ,2 , .  . . , N (61) 

n= 1 

where 
n , 

Note  that 1, is the potential at the center of As,,, due to a 
uniform charge density of unit amplitude over As,,. A solu- 
tion to  the set (61) gives the G, in terms of which the charge 
density is approximated by (60). The corresponding ca- 
pacitance of the plate, approximating (58), is 

l N  
V n = 1  mn 

C = - 1 a&,, = 1 l;‘Asn. (63) 

This result can be interpreted as stating  that the capacitance 
of an object is the  sum of the capacitances of all its subsec- 
tions plus the  mutual capacitances between  every  pair of 
subsections. 

To translate  the above results into the language of linear 
spaces and the method of moments, let 

Then f ) = g  is equivalent to (57). A suitable inner product, 
satisfying (2) to (4), for which L is self adjoint, is 

(f, s> = la d x l a  dYf (x, Y )  g(x, Y ) .  (67) 

To apply the method of moments, use the function (59) as 
a subsectional basis, and define testing functions as 

wrn = &X - - ym) (68) 

which is the two-dimensional Dirac delta function. Now the 
elements of the [ I ]  matrix (27) are those of (62) and the [SI 
matrix of (28) is 

LvJ 
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The matrix equation (26) is, of course, identical to the set of 
equations (61). In terms of the inner product (67), the ca- 
pacitance (58) can be written as 

e=-  (fl? 4) 
V2 

(70) 

since q5= V on the plate. Equation ( 7 9  is the conventional 
stationary formula for the  capahtance of a conducting 
body [ 111. 

For numerical results, the I,,,, of (62) must  be evaluated. 
Let 2b = 2 a / f l  denote the side length of each As,, The 
potential at the center of As, due to unit charge density over 
its own  surface  is 

b b 1 
IM = s- b dxJ- b dy 47c&J= 

2b  2b 
= -In (1 + J?) = - (0.8814). (71) 7ZE 7LE 

This derivation uses Dwight 200.01 and 731.2  [12]. The 
potential at the center of As,,, due  to unit charge over As,, can 
be similarly evaluated, but  the formula is complicated. For 
most purposes it is  sufficiently accurate to  treat  the charge 
on h,, as if it were a point charge, and use 

As, b2 I,, % ~ - - m # n. (72) 
47~~Rmn XEJCXrn - X,)' + CVm - Y J 2  

This approximation is 3.8 percent in error for adjacent sub- 
sections, and has less error  for nonadjacent ones. Table I 
shows capacitance, calculated by (63) using the a's obtained 
from the solution of (61), for various numbers of subareas. 
The second column of Table I uses the approximation (72), 
the third column uses an exact evaluation of the I,,,,,. A 
good estimate of the true capacitance is 40 picofarads. 
Figure 2 shows a plot of the approximate charge density 
along the  subareas nearest the center line  of the plate, for 
the case N =  100 subareas. Note  that 0 exhibits the well- 
known square  root singularity at the edges  of the plate. 

TABLE I 
CAPACITANCE OF A SQUARE PLATE  (PICOFARADS PER METER) 

No. of subareas I C/2a approx. I,,,,, I C/2a exact I ,  
I I 

I 1 31.5  31.5 
9 37.3 36.8 

16 38.2 1 37.7 
36 39.2  38.7 

~ 

1 0 0  1 39.5 

VIII. ELECTROMAGNETIC FIELDS 
The  operator  formulation of electromagnetic fields  is 

analogous to  that of electrostatic fields, but considerably 
more complicated. For the time-harmonic case, do* varia- 
tion,  the Maxwell equations are3 

Only the case of electric  sources is considered  in  this  paper. The more 
general case of electric  and  magnetic  sources is treated by the  reaction 
concept [8], [9]. 

0 .I .2 .3 .4 .5 .6 .7 .8 .9 1.0 
dtsiance along pbie 

Fig.  2. Approximate  charge  density on subareas closest  to the  centerline 
of a  square plate. 

V x  E =  - j w p H  
V x H = j o s E  + J (73) 

where E is the electric field, H the magnetic field, and J the 
electric current density. Equations (73) can  be combined 
into  a single equation for E as 

- V x (p-'V x E) - j w s E  = J .  - 1  
(74) 

This is  of the form 

L(E) = J (75) 

where the operator L is evident from (74). For  a specific case, 
let the permittivity and permeability be that of free space, 
that is, E = and p = p o .  The domain of L must be restricted 
by suitable differentiability conditions on E, and boundary 
conditions on E must  be  given. To be  specific,  let  these 
boundary conditions be the radiation condition, that is, the 
field  must represent outward traveling waves at infinity. 

The inverse operator is the well-known potential integral 
solution to (74), which  is 

E = L-'(J) = - j o A  - VCD (76) 

where 

(79) 

These equations can be combined into  a single equation 

E = L-'(J) = s s b ( r ,  r').  J(r')dr' (80) 

where r is the dyadic Green's function. However, the deriva- 
tion of (80) involves an interchange of integration and dif- 
ferentiation which restricts the domain of L- ' more than 
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necessary [13]. It is  often better to consider (76) to (78) as 
the basic equations, with (80) as symbolic of them. 

A suitable inner product for electromagnetic field prob- 
lems  is 

(E, J ) = J j j  E . J d t  (81) 

which is the  quantity called reaction. Note  that (81)  satisfies 
postulates (2), (3), and (4). The concept of reciprocity is a 
statement of the self-adjointness of L-', that is, 

( L - l J , ,   J 2 )  = (J1,  L-'J2). (82) 

The  operator L is also self adjoint, since  (82) can be written 
as 

(El ,   LE2) = (LE, ,  E2) .  (83) 

Other properties of L can be determined as the need  arises. 

IX. WIRES OF ARBITRARY SHAPE 
An important engineering problem is the electromagnetic 

behavior of thin wire objects. A general analysis of such 
objects according to  the method of moments is presented in 
this section. The impressed field  is considered arbitrary,  and 
hence both  the  antenna  and scatterer problems are in- 
cluded in the solution. The distinction between antennas 
and scatterers is primarily that of the location of the source. 
If the source is at the object it is  viewed as  an  antenna; 
if the source is distant from the object it  is  viewed as  a 
scatterer. 

So that  the development of the solution may  be  easily 
followed, it is  given  with few references to the general 
theory. Basically,  it involves a) an approximation of the 
exact equation for conducting bodies by an approximate 
equation valid for thin wires, b) replacement of the deriva- 
tives by finite difference approximations, yielding an ap- 
proximate operator, c) use  of pulse functions for expansion 
functions, to give a step approximation  to  the  current  and 
charge, and  d)  the use  of point-matching for testing. 

A particularly descriptive exposition of the solution can 
be made in terms of network parameters. To effect a solu- 
tion,  the wire  is considered as N short segments connected 
together. The end points of each segment  define a pair of 
terminals in space. These Npairs of terminals can be thought 
of as forming an N port network, and  the wire object is ob- 
tained by short-circuiting all ports of the network. One can 
determine the impedance matrix for  the N port network by 
applying a  current source to each port in turn,  and calculat- 
ing the open circuit voltages at all ports. This procedure in- 
volves only current elements in empty space. The admit- 
tance matrix is the inverse of the impedance matrix. Once 
the  admittance matrix is known, the  port currents (current 
distribution  on  the wire) are  found for any particular voltage 
excitation (applied field) by matrix multiplication. 

An integral equation for the charge density as and current 
J ,  on a conducting body S in a known impressed  field E' is 
obtained as follows. The scattered field E', produced by 
as and J, ,  is  expressed  in terms of retarded potential in- 

\ n 

( a )  ( b )  
Fig. 3. (a) A wire scatterer. (b) The wire axis divided into N segments. 

tegrals, and  the boundary condition n x (E'+ E') = 0 on S 
is applied. This is summarized by 

Es = - j o A  - v$ (84) 

n x E ,  = - n x E' onS. (88) 

Figure 3(a) represents an  arbitrary thin-wire scatterer, for 
which the following approximations are made. a) The cur- 
rent is assumed to flow  only in the direction of the wire  axis. 
b) The  current  and charge densities are approximated by 
filaments of current Z and charge a on  the wire  axis. c) The 
boundary condition (88)  is applied only to  the axial com- 
ponent of E at the wire surface. To this approximation, (84) 
to (88)  become 

on S 

e - j k R  

dl 
axis 

-1 d l  a=-- 
jo dl 

where I is the length variable along the wire  axis, and R is 
measured from a source point on the axis to  a field point 
on  the wire surface. 

A solution to the above equations is obtained as follows. 
Integrals are approximated by the sum of intergrals over N 
small segments, obtained by treating I and q as constant 
over each segment. Derivatives are approximated by finite 
differences  over the same intervals used for integration. 
Figure 3(b) illustrates the division of the wire  axis into N 
segments, and defines the  notation. If a wire terminates, the 
boundary condition Z = O  is taken into account by starting 
the first segment 1/2 interval in from the end of the wire. 
This is  suggested in Fig. 3(b) by the extra 1/2 interval shown 
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at each end.  The nth segment is identified by its  starting 
point ii , its  midpoint n, and its termination ir . An increment 
Al, denotes  that between n and ii, AI; and Al; denote in- 
crements shifted  1/2 segment minus or plus along 1. The 
desired approximations  for (89) to (92) are  then 

a(h) x - - 1 Z(n + 1) - Z(n) 
10 [ Aj: 1 

(94) 

with equations similar to (95) and (96) for &fi) and a(i). 
The 0's are given in terms of the l's by (%), and hence (93) 

can be written  in terms of the I(n) only. One can view the N 
equations represented by (93) as the  equations  for an N 
port network with terminal  pairs (ir, i). The voltages 
applied to each port  are  approximately E' - A&. Hence, by 
defining 

one can rewrite (93) in matrix form as 

[VI = ~ZlC~I .  (98) 
This  corresponds  to  the  method of moment representation 
(26), with [ Z ]  corresponding to [ I ] ,  [VI to [g] ,  and [Il to [a]. 
The elements of the matrix [ Z ]  can be obtained by sub 
stituting (94) through (96) into (93) and  rearranging  into 
the  form of (98): Alternatively, one  can  apply (93) through 
(96) to two isolated elements and  obtain  the impedance ele- 
ments directly. This  latter  procedure will be used because it 
is somewhat easier to follow. 

Fig. 4. Two segments of a wire scatterer. 

Consider two representative elements of the wire scat- 
terer, as shown in Fig. 4. The  integrals  in (94) and (95) are of 
the same form,  and  are  denoted by 

Symbols + and - are used over m and n when appropriate. 
Evaluation of the + in general is considered in  the Appendix. 
Let element n of Fig. 4 consist of a  current filament I(n), and 
two charge filaments of net charge 

where q=aAl. The vector potential  at rn due to Z(n) is, by 
(941, 

A = pZ(n)A*&(n, m). (101) 

The  scalar  potentials at &I and i~ due  to  the charges (100) are, 
by (95) 

4th) = - [Z(n)+(ii, rn) - I (n)$( i ,  rn)]. 
1 

JWE 

Substituting from  (101) and (102) into (93), and forming 
2, = Ei(m) * AlJZ(n), one  obtains 

Z ,  = jo,uAl, * Alm+(n, m) 
1 

IWE 
+ 7 [+(A, h) - $(it, h) - $(h, m) + $(i, m)]. (103) 

This result  applies  for self impedances (rn = n) as well as  for 
mutual impedances. When the two current elements are 
widely separated,  a simpler formula based on the  radiation 
field from  a  current element can be used. 

The wire object is completely characterized by its imped- 
ance  matrix,  subject, of course, to the  approximations in- 
volved. The object is  defined by 2N points on the wire axis, 
plus  the wire radius.  The impedance elements are calculated 
by (103), and  the voltage matrix is determined by the im- 
pressed  field, according to (97). The  current  at N points on 
the  scatterer is then given  by the  current  matrix,  obtained 
from  the inversion of (98) as 

[ I ]  = [ Y ] [ V ]   [ Y ]  = [Z]? (104) 

Once the  current  distribution is known, parameters of in- 
terest such as field patterns,  input impedances, echo areas, 
etc., can be calculated by numerically evaluating the  ap- 
propriate  formulas. 

X. WIRE ANTENNAS 
A wire antenna is obtained when the wire  is  excited  by a 

voltage source at one or  more  points  along its length.  Hence, 
for an antenna excited  in the nth interval, the applied 
voltage matrix (97) is 

i.e.,  all elements zero except the nth, which  is equal to the 
source voltage. The  current  distribution is  given  by  (104), 
which for the [VI of (105)  becomes 
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Hence, the nth column of the  admittance matrix is the 
current  distribution for a unit voltage source applied to the 
nth interval. Inversion of the impedance matrix therefore 
gives simultaneously the  current distributions when the 
antenna is  excited in any arbitrary interval along its length. 
The diagonal elements Y,  of the admittance matrix are  the 
input admittances of the wire object fed in the nth interval, 
and  the Y,, are the transfer admittances between a  port in 
the mth interval and  one in the  nth interval. 

The  radiation  pattern of a wire antenna is obtained by 
treating the antenna  as an array of N current elements 
I(n)Al,. By standard formulas, the far-zone vector potential 
is given by 

pe - i k r o  
A = - I(n)Al,e j k r ,  cos <,, (107) 

471r0 n 

where ro and r ,  are  the radius vectors to the distant field 
point and  to the source points, respectively, and <,, are the 
angles  between ro and r,. The far-zone field components are 

E ,  = - joA,  E ,  = - joA,  (108) 

where 0 and 4 are the conventional spherical coordinate 
angles. 

2 

antenna 

Y 

Fig. 5.  A wire antenna  and  distant dipole. 

An alternative derivation of the radiation pattern can be 
obtained by reciprocity. Figure 5 represents a distant cur- 
rent element If, (subscripts r denote "receiver"), adjusted 
to produce the unit plane wave 

,y = u , e - j k r ' r n  

in the vicinity of the antenna. Here u, is a unit  vector  specify- 
ing the polarization of the wave, k, is a wave number vector 
pointing in the direction of travel of the wave, and rn is the 
radius vector to a point n on the antenna. By reciprocity, 

(109) 

E ,  = '1 E ' . I d l  (1  10) 

where E,  is the u,  component of E from the antenna, and 
I is the  current  on  the  antenna.  The constant 1/11 is that 
needed to produce a plane wave of unit amplitude at  the 
origin, which  is 

' 1  antenna 

A numerical approximation to (1  10)  is obtained by defining 
a voltage matrix 

where E' is given by (109), and expressing  (1  10) as the matrix 
product 

where [PI denotes the transpose of [VI.  Note  that [Vr] is 
the same matrix for  plane-wave excitation of the wire. 
Equation (1  13) remains valid  for an  arbitrary excitation 
[V"] ; it is not restricted to  the single source excitation (105). 

The power gain pattern for the u, component of the radia- 
tion field  is  given  by 

where q = f l~  is the intrinsic impedance of space, and Pin is 
the power input  to the antenna (* denotes conjugate) 

Pin = Re ([P"][Z*]> = Re {[P"][Y*][V'*]}. (115) 

For the special  case of a single source, (105), Pin becomes 
simply  Re (I V , I 2  x,). Using (1  13) and (1 15)  in (1 14), one has 

s(4 4) = - 471 Re {[8"][Y*][Vs*]} 

where [ V(0, 4)] is  given  by (1 12) for various angles  of 
incidence e,& Equation (1 16) gives the gain pattern for only 
a single polarization of the  radiation field.  If the  total power 
gain pattern is desired, the g's for two orthogonal polariza- 
tions may  be added together. 

Computations for linear wire antennas have  been made 
using the formulas of this section, and good results ob- 
tained. For far-field quantities, such as radiation patterns, 
as few as 10 segments per wavelength  give accurate results. 
(Radiation  patterns  are  continuous linear functionals, that 
is, they depend on the weighted integral of the antenna 
current.) For the  current itself, convergence was slower. A 
typical result for a half-wave antenna was about four per- 
cent change in going from 20 to 40 segments,  less for other 
lengths. Faster convergence can be obtained by going from 
a step approximation to a piecewise-linear approximation 
to  the  current. This modification was  used for most  of the 
computations, of  which Fig. 6 is typical. It shows the input 
admittance to a center-fed linear antenna with length-to- 
diameter ratio 74.2 (SZ = 2 log L/a = 10) using 32  segment^.^ 

Because of the  extra 1/2 interval  at  each  wire  end,  this  corresponds to 
an N=31 solution. 
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Fig. 7. 
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Fig. 6.  Input admittance for a center-fed hear antenna 
of length L and  diameter Lp2.4. 

For the points tested, it was almost identical to  the 64 seg- 
ment solution using (103). It is compared to the second- 
order variational solution of Y.  Y. Hu [14], and to the 
second iteration of Hallen's equation by King  and Middle- 
ton [ 151. The  conductances  are in close agreement except for 
Hu's solution L > 1.31,  in  which  case  her trial functions are 
inadequate. The input susceptances are in poorer agree- 
ment, which  is to be expected because each solution treats 
the gap differently. The  matrix solution of this paper treats 
it as if it were one segment  in  length.  Hu's solution contains 
no trial function which can  support a singularity in current 
at the gap, hence  gives a low gap capacitance. The  King- 
Middleton  method is an iterative procedure, and hence B 
depends  on the number of iterations. Many  more  computa- 
tions, as well as a description of the piecewise-linear 
modification for the current, can be found in the original 
report [16]. 

XI. WIRE SCATTERERS 

Consider now the field scattered by a wire  object in a 
plane wave incident field. Figure 7 represents a scatterer 
and two distant current elements, ZZ, at the transmitting 
point, r,, and 11, at the receiving point r,. The Zl, is adjusted 
to  produce a unit plane wave at the scatterer 

/ 
Definitions for plane-wave scattering. 

where the notation is analogous to  that of (109). The voltage 
excitation matrix (97)  is then 

and the current [I] is  given  by  (104)  with [VI = [V']. The 
fkld produced by [Z] can then be found by conventional 
techniques. 

The distant scattered field can also be evaluated by reci- 
procity, the same in the antenna case. A dipole Zl, at the 
receiving point is adjusted to produce the unit plane  wave 
(109) at the scatterer. The scattered field  is then given  by 
(1 13)  with [ V s ]  replaced by  [V'], that is, 

A  parameter of interest is the bistatic scattering cross sec- 
tion a, defined as that  area for  which the incident  wave con- 
tains sufficient  power to  produce the field E, by omnidirec- 
tional radiation. In equation form, this is 

a = 4nr,2(Er(' 

= - l[t'][Y][V']l'. 
q2k2 
411 

For  the  monostatic cross section, set [VI=  [VI in  (120). 
The cross section depends  on the polarization of the incident 
wave and of the receiver. A better description of the scat- 
terer can be made in terms of a scattering matrix. 

Another  parameter of interest is the total scattering cross 
section a,, defined as the ratio of the total scattered power to 
the power density of the incident wave. The total power 
radiated by [Z] is  given  by (1 15)  for  any excitation ; therefore 
the scattered power  is  given  by  (1  15)  with [V'] replaced by 
[VI. The incident power density is  1/11, hence 

a, = q Re  [P'][Y*][V'*].  (121) 

Note  that a, is dependent on the polarization of the incident 
wave. 

Computations for linear wire scatterers have  been made 
using the same [ Y ]  matrix  as for antennas. Again  far-field 
quantities, such  as  echo areas, converged rapidly, with good 
results obtained with as few as 10 segments per wavelength. 
Computation of the current converged  less rapidly than far- 
field quantities, but  more rapidly than did computation of 

= , , e - j k . h  (117) the current  on antennas. This is  because the impressed  field 
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Fig. 8. Echo  area of a wire  scatterer of length L and 
diameter L/72.4, broadside  incidence. 

E' for plane-wave scattering is a well-behaved function, 
compared with the impulsive  impressed  field of the  antenna 
problem. Figure 8 shows the echo area for the same wire as 
was  used for an antenna in Fig. 6. Hence, length-to-diame- 
ter ratio is  74.2, and  a 32 segment  piecewise-linear current 
approximation was  used. It is compared to Hu's second- 
order variational solution [14]. Again good agreement is 
obtained in the range L< 1.3& for which  Hu's trial func- 
tions are  adequate,  and  a slight discrepancy shows up for 
L> 1.31. Additional computations for linear wire scat- 
terers are given in the original report [16]. 

XII. DISCUSSION 
The method of reducing a functional equation to  a matrix 

equation,  and then inverting the matrix for a  solution, is 
particularly well suited to machine computation.  Further- 
more, the inverted matrix is a representation of the system 
for  arbitrary excitation, hence  all responses are solved for 
at once. As demonstrated by the treatment of  wire objects of 
arbitrary shape, one can also obtain solutions for classes of 
systems. 

In electromagnetic theory, the interpretation of the solu- 
tion in terms of generalized network parameters is quite gen- 
eral, and applies to bodies of arbitrary shape and  arbitrary 
material. This generalization has been  discussed  in another 
paper [ 171. The network representation is also useful for 
the  treatment of loaded bodies, both with lumped loads [18] 
and with continuous loading. Examples of continuously 
loaded bodies are dielectric coated conductors, magnetic 
coated conductors,  and imperfect conductors. 

The solution for wires  of arbitrary shape, Section IX, is a 
first-order solution to  the  appropriate integrodifferential 
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equation. Higher-order solutions can be obtained by using 
better-behaved expansion and/or testing functions, and by 
taking into account the  curvature of the wire  within the 
elementary segments. For a general solution, it appears to 
be more convenient to use a numerical procedure than  an 
analytical procedure. This numerical procedure can be im- 
plemented by further subdividing each wire segment, and 
summing the  contributions from the finer subdivisions to 
obtain  the elements of [Z]. 

As the order of solution is increased, much of the com- 
plication comes from the treatment of singularities. The 
derivative of the  current (i.e., charge) is discontinuous at 
wire ends and  at any voltage source along the wire. In 
the first-order solution t h s  problem has not been accurately 
treated,  and  computations  appear to justify that this pro- 
cedure is  permissible. For example, at  the end of a wire 
the solution (103) treats  the charge as an equivalent line 
segment extending 1/2 interval beyond the current. The 
actual charge is singular (or almost so), and could be 
treated by a special subroutine. Whle this modification is 
simple, a similar modification for voltage sources along the 
wire  is not practicable for  a general program. This is be- 
cause the impedance matrix would then depend on the loca- 
tion of the source instead of  being a characteristic of the 
wire object alone. On the basis of experience,  it appears 
that  a first-order solution with no special treatment of 
singularities is adequate  for most  engineering purposes. 
This is particularly true  for far-zone quantities, such as 
radiation  patterns  and echo areas, which are relatively in- 
sensitive to small errors in the current distribution. 

A number of other electromagnetic field problems have 
been treated in  the  literature by procedures basically the 
same as  the method of moments with point matching. Some 
of these problems are scattering by conducting cylinders 
[19],  [20], scattering by dielectric cylinders [21],  [22], and 
scattering by bodies of revolution [23]. Also available in the 
literature is an alternative treatment of linear wire scat- 
terers, using sinusoidal expansion functions [24], and an 
alternative treatment of wire antennas of arbitrary shape, 
using an equation of the HallCn  type  [25]. 

APPJWDM-EVALUATION OF t+h 
An accurate evaluation of the scalar t+h function of  (99) 

is desired. Let the  coordinate origin be located at the point 
n,  and  the  path of integration lie along the z axis. Then 

1 F o-jkRmn 

$(m, n )  = - ___ dz' ' J  8na - =  R,, 

where 

and a =  wire radius. The geometry  for  these formulas is 
given in Fig.  9. 

One approximation to  the $'s can be obtained by  ex- 
panding the exponential in a Maclaurin series,  giving 
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Fig. 9. Geometry for evaluating $(m, n). 

1 k2 
8na --d R,, 2 

$ = -r (-!- - j k  - - R, + . . . 

The first term is identical with the static potential of a fila- 
ment of charge. The second term is independent of R,. 
Hence, a two-term approximation of  (122)  is 

If r = is large and a <<A, then 
e-ib 

$(m7 n) = T’  (127) 

For a first-order solution, one can take (126) as applying 
for small r, say r 1 2 a ,  and (127) for large r,  say r>2a. 

For higher-order approximations, more rapid conver- 
gence can be obtained by taking a phase term e-Jb out of the 
integrand. Then 

a + z  
2 

13=--J p2 + (a + z)2 + - J P 2  + ( z  - 
a - z  

2 
P2 + - I ,  2 (132) 

2a3 + 6az2 
3 

I ,  = Zap’ + (133) 

An expansion of the type (129)  is theoretically valid  for  all 
r ,  but it  fails numerically for large r because it involves sub- 
tractions of almost equal numbers. For p < a, one should set 
p = a in the expansion. 

An expression suitable for large r is obtained by expand- 
ing (122) in a Maclaurin series in z’ as 

+ . . -1 dz’ (134) 

where 

e - j k J p 2 + ( z - z ‘ ) 2  

Jp2 + ( Z  - 2’)‘ 
f (z’) = 

When a five-term expansion of (1  34)  is integrated term by 
term,  there results 

$ = - [Ao  +jkaA,  + (k~x)~A,  + j ( k ~ r ) ~ A ,  + (ka),A,]  (135) 
e - j b .  

4m 

where 

A,, = 1 + L(F)2 6 r  [-I + +->’I 
+ -!-(!), 4 0 r  [3 - 30(:)’ + 35(:),] 

A ,  = 

A ,  = 

A ,  = 

Term by term integration gives 
e-jb k2 
8na !&7 4 = - - jk(12 - rI,) - - ( I 3  - 2r12 + ? I , )  

2 

where 

I, = log [‘ + a + JP’ + (2 + a)‘] 
z - a + Jp’ + (z - a)’ 

- 35($ 

12(;)2 

4 1  

+ 15(:y] 

For accuracy of better than oDe percent, one can use  (129) 
for r <  l0a and (135)  for r 2  loa. 
An alternative derivation of the type of  (135) can be ob- 

tained as follows. For r > z’, one has the expansion 
e - j k R m n  m 
-- - x (2n + l)j,(kz‘)hi2)(kr)P, 
-jkR, n = O  

where j ,  are the spherical Bessel functions of the first kind, 
hi2)(kr) are  the spherical Hankel functions of the second 
kind, and P,(z/r) are  the Legendre polynomials. If  (137) is 
substituted into (122) and integrated term by term, there 
results 
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where 

Equation (138)  can  be  rearranged into the form of (135), 
although  the recurrence formulas for hk2) and P ,  make 
computation directly from  (138)  almost as easy. 
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SECTION I 
A .  Introduction 

D IGITAL  FILTERING is the process of spectrum 
shaping using digital hardware  as  the basic building 
block. Thus  the aims of digital filtering are the same 

as those of continuous filtering, but  the physical realization 


