
EE840 COMPUTATIONAL ELECTROMAGNETICS – Fall 2002 
 

Lecture #6: Introduction to Higher Dimensional FDTD 
  

 
 
1 Key points from last lecture: 
 

1. Completed the introducing of the 1D FDTD method. 
 

2. Discussed the implementation of a Gaussian and hard sinusoidal source. 
 

3. Presented the ideal radiation boundary condition. 
 

4. Over viewed the layout of a 1D FDTD program. 
 

2 Today’s Objectives 
 

1. Complete discussion of stability for 1D FDTD. 
 

2. Introduce the 2D and 3D FDTD formulations. 
 

3. Discuss mesh material properties. 
 
2.1 Stability 
 
As stated before, the FDTD method approximates Maxwell's equations as a set of coupled difference 
equations. As such the method is useful only when the solution of the difference equations are convergent 
and stable. Convergence means that, as time stepping continues the solution to the difference equations 
asymptotically approaches the solution given by Maxwell's equations. On the other hand stability is 
basically stated as a set of conditions under which the error generated by the finite difference 
approximation is finite and does not grow in an unbounded fashion as time stepping progresses. As a result 
there is a mathematical relation to describe this problem. 
 
     To see consider the requirement for ∆t in the difference equations.  As shown before, the solution for a 
steady state field in a lossless medium is of the form: 
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This function can also be thought of as the solution to the following differential equation 
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If we approximate this equation in the difference equation, we get the following 
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When ∆t is small, we can define a numerical increment factor q 
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which tells us the time evolution of the fields at a give point in space. Thus, if for subsequent time steps this 
expression increases, then q > 1 and the field values grow without bound and are therefore considered 

unstable. Therefore we need to establish the conditions under which q  < 1.   To do this substitute Eq. 
(158) into Eq. (157) and solve for the following quadratic equation, 
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The solution to this equation is 
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Numerical stability requires that as the number of time steps approaches infinity, i.e., as n ∞, and given 
∆t is small enough, that the numerical increment factor 1≤q .  According to Eq. (160) the condition 

sufficient for 1≤q  is 
2

t∆ω
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ω
2

.  Since Tπω 2=  we have 
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Next consider the time step requirement in relation to the spatial step ∆x for a given steady state field.  In a 
Cartesian coordinate system, Maxwell’s equations result to the homogenous scalar wave equation: 
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As shown before the solution to this equation is a plane wave of the form 
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Substituting this expression into a difference form of Eq. (162), i.e., using the second order difference 
expression, 
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we get 
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and the result is, 
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This equation gives us the relation between the frequency ω and the wave vector k for a plane wave for the 
discretized form of the wave equation.  If we combine this with Eq. (161) we have 
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Since sin2(θ) is bounded by 1, the following condition must be met, 
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in order for the above relation to be satisfied for any wave number, k.  This reduces tot he simple stability 
condition, 
 

xtc ∆≤∆ .      (169) 
 

This is the condition under which the difference solution will be stable.  For higher dimensions we have the 
form Dxtc ∆≤∆ , where D = 1, 2, or 3, depending on the number of dimensions used in the solution 
space.  This will be discussed later, for now we will focus on how to implement all of the above ideas ina 
single program. 
 
2.2 Writing a 1D FDTD Program 
 
1. Define physical constants: µ, ∈, (x), Z0, Ca, and Cb. 
 
2. Define program constants: E0, ∆t, ∆x, Nt (total number of time steps), and Nx (total number of nodes). 
 
3. If using s pulse source, define Ez Nd Hy, otherwise implement hard sources for Ez. 
 
4. Start the time marching: 
 

- pulse: n = 1 : Nt 
- sinusoid: n = 1 : Nt 
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5. Increment spatial index: 

if  i = 1 
 Eznew(1) = Ezold(2) 
 
else if i = Nx 
 Eznew(N) = Ezold(N - 1) 
 
else 
 Eznew(i) =Ca(i)Ezold(i) + Cb(i) [Hyold(i - 1) – Hyold(i)] 
 
end 
 
 
separate loop 
 Hynew(i) = Hyold(i) - Eznew(i + 1) = Eznew(i) 

 
1. Store previous time variables 

Hyold  = Hynew 
Ezold  = Eznew 

Go To Step 4 
 
3 General 3D Formulation 
 
So far we have considered a simple 1D FDTD formulation, which physically represents the propagation of 
an infinite plane wave. More often than not, electromagnetic boundary value problems cannot be accurately 
represented as a 1D problem. In these cases it becomes necessary to use a more general formulation of the 
FDTD method. To this end we will discuss the 3D formulation in this section. 
     Recall that Maxwell's curl equations are: 
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For simplicity we will only consider their solution for a linear and isotropic medium.  In Cartesian 
coordinates, the curl equations can be written as: 
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and 
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As discussed before we can this set of coupled differential equations as a set of coupled difference 
equations, which is discussed next. 
 
3.1 3D Discretization 
 
Recall that a function f(x, y, z, t) can be represented in discrete form as: 
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In general, the FDTD space is sampled in a uniform fashion in which case we can represent the spatial step 
size as 
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Using this approach we can represent the electric and magnetic field at the individual nodes (i, j, k).  Note, 
that the E and H nodes are only defined where (i, j, k) are integers. Because of this the field values at the 
points in-between the nodes are undefined! 
     According to the difference approximation, the spatial and temporal derivatives are approximated as, 
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and 
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3.2 FDTD Discretization of 3-D Curl Equations 
 
Using the above difference expression in the first of Maxwell’s curl equations and assuming that the point 
(x, y, z, t) is an Hx node, (i, j + ½. k + ½, n) we have: 
 

 5















∆

+−++
−

∆

+−++

++
=

∆
++−++ −+

y
kjiEkjiE

z
kjiEkjiE

kjit
kjiHkjiH

n
y

n
y

n
y

n
y

r

n
x

n
x

),,(),1,(),,()1,,(

.
),,(

1),,(),,(

2
1

2
1

2
1

2
1

2
1

2
1

0

2
1

2
1

2
1

2
1 2

1
2
1

µµ
   (177) 

 
Similarly, the other two equations resulting from Eq. (171) can be written as: 
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     In a corresponding fashion the first relation in Eq. (172) can be represented according to the following 
difference equation: 
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where we have used the following interpolation, 
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Similarly, the other two equations can be represented as: 
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  The above difference equations can be simplified if we set µr = 1, use the relation ∆x = ∆y = ∆z = δ, and 
define the following material constants: 
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The index m in the above equation stands for a set of discretized coordinates, for example in Eq. (183) m is 
equal to (i + ½, j, k), (i, j + ½, k), and (i, j, k + ½) for each equation.  Substituting these parameters back 
into the difference equations yields: 
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Now let's see try to better understand the physical meaning of Eqs. (360) through (365). If we refer to 
Figure 1, we can see that the Hx, located in the center of the back face of cube, is dependent on the spatial 
derivatives of the surrounding E field components, i.e., the curl of Ey and Ex.  Also according to Eq. (360) it 
depends on it previous value, which is located in the center of the front face of the cube. We should also 
note that in between the Hx values is a ring of three other field components, namely Hy, Hz, and Ex.  This 
implies that for each time step a set of electric and magnetic fields are used to generate a set of electric and 
magnetic field components at the next time step. This leap frog process provides a tremendous amount of 
insight in to the physics of propagation. 
     The following table illustrates the leap frog process for the electric and magnetic fields at various nodes 
with their corresponding time and spatial coordinates. 
     Therefore according to Eqs. (360) through (365), we can formulate an iterative algorithm for the 
computation of electric and magnetic field components. This was the major contribution of Kane Yee in 
1966. 
     Now let's try to understand the meaning of the index m. In the problem of wave propagation and 
scattering, the scattering object can be divided into several parts, each of which contains a uniform 
medium, as shown in Figure 3. As a result m can be thought of as a transformation variable that maps a 
three dimensional material coefficient in to a one-dimensional coefficient for ease of computation. 
Therefore in the case of  Figure 3 the whole space has only 3 different values: conductor, medium, and 
vacuum. 
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Figure 1:  Three-dimensional FDTD lattice, note that the gray region applies to the two-dimensional lattice. 
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Figure 2: Illustration of the spatial and temporal relation of the E and H nodes in a 3D FDTD computational 
lattice. 
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Figure 3: Illustration of a homogeneous material medium for the 2D FDTD. 

 
 

4 2D FDTD Formulation 
 
In the formulation of the two-dimensional FDTD method one can assume either TE-polarization (electric 
field perpendicular to the plane of incidence) or TM-polarization (magnetic field perpendicular to the plane 
of incidence). This results from the fact that in two-dimensions neither the fields nor the object contain any 
variations in the z-direction, consequently, all of the partial derivatives with respect to z are zero. Therefore, 
Maxwell's equations, in a rectangular coordinate system, can be reduced to two decoupled sets of 
equations, 
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and 
 

 10



.1

1

1









∂

∂
−

∂
∂

=
∂
∂

∂
∂

∈
=

∂

∂
∂
∂

∈
=

∂
∂

x
E

y
E

t
H

x
H

t
E

y
H

t
E

yxz

zy

zx

µ

    (192) 

 
The first set includes Hx and Hy as components of the magnetic field in the x and y direction, respectively, 
and the Ez as the component of the electric field in the z direction.  The second set, includes Ex and Ey as 
components of the electric field in the x and y direction, respectively, and Hz as the component of magnetic 
field in z direction.  Applying the central difference expressions, as presented before, the equations for the 
TM mode are derived to be the following: 
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Similarly the TE case can be written as: 
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     In Eq. (199) we shift the spatial index corresponding to (x, y) by ½, then coordinates (x, y) shift by δ/2 
along x and y axis.  Also shifting the time step t, by ∆t/2 Eq. (199) changes to: 
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 (195) 
 

In this way the E,H nodes in a 2D array, corresponding to Eqs. (338) and (200) can be shown as in Figure 
3 in the next section. 
The application of the FDTD method to the solution of 2D problems can be succinctly summed up as an 
iterative algorithm, as shown in Figure 4 in the next section. 
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