

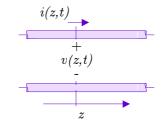
Parametri di Diffusione

- Linee di trasmissione: richiami
 - Onde di tensione e corrente
 - Coefficiente di riflessione
 - Potenza nelle linee
 - Adattamento
- Parametri di Diffusione (S)
 - Definizione
 - Applicazioni ed esempi

Linee di trasmissione: richiami

- Ad alte frequenze, i segnali (tensioni e correnti) si propagano lungo i conduttori con ritardi che sono ormai confrontabili con quelli dovuti ai componenti
- I conduttori vanno descritti come linee di trasmissione, che obbediscono (almeno a bassa frequenza) alle equazioni dei telegrafisti:

$$\left\{ \begin{array}{l} \frac{\partial v(z,t)}{\partial z} = -Ri(z,t) - L\frac{\partial i(z,t)}{\partial t} \\ \frac{\partial i(z,t)}{\partial z} = -Gv(z,t) - C\frac{\partial v(z,t)}{\partial t} \end{array} \right.$$



 Le equazioni dei telegrafisti possono essere interpretate in termini di un circuito equivalente (a parametri concentrati) per uno spezzone di linea di lunghezza infinitesima dz:

$$i(z,t) \xrightarrow{Rdz} \xrightarrow{Ldz} \xrightarrow{i(z,t)+di} \\ v(z,t) \xrightarrow{} Cdz \xrightarrow{} Gdz \xrightarrow{} v(z,t)+di$$

- L, C, R, G sono l'induttanza, capacità, etc. per unità di lunghezza.
- Se R, G sono trascurabili, la linea è un componenti non dissipativo e si dice senza perdite.

Linee di trasmissione: richiami

Nelle linee senza perdite,

$$\left(\begin{array}{c} \frac{\partial^2 v(z,t)}{\partial z^2} = LC \frac{\partial^2 v(z,t)}{\partial t^2} \\ \frac{\partial^2 i(z,t)}{\partial z^2} = LC \frac{\partial^2 i(z,t)}{\partial t^2} \end{array} \right)$$

o, nel dominio trasformato,

$$\begin{cases} \frac{\partial^2 V(z,\omega)}{\partial z^2} &= -\omega^2 LCV(z,\omega) \\ \frac{\partial^2 I(z,t)}{\partial z^2} &= -\omega^2 LCI(z,\omega) \end{cases}$$

che ha soluzione

$$\left\{ \begin{array}{ll} V(z,\omega) &=& V_0^+e^{-j\beta z}+V_0^-e^{j\beta z} & \text{linea.} \\ I(z,\omega) &=& I_0^+e^{-j\beta z}+I_0^-e^{j\beta z} \end{array} \right. \text{ La velocità } u \text{ dei segnali vale}$$

con

$$\beta = \omega \sqrt{LC} \left[= \frac{2\pi}{\lambda} \right]$$

 La soluzione generale è quindi data da due segnali viaggianti in direzioni opposte nella linea, ciascuno dei quali è scomponibile nelle sue componenti armoniche. È facile vedere che valgono queste relazioni:

$$I_0^+ = \frac{V_0^+}{Z_0}, \ I_0^- = -\frac{V_0^-}{Z_0},$$

dove

$$Z_0 = \sqrt{\frac{L}{C}}$$

è l'impedenza caratteristica della linea.

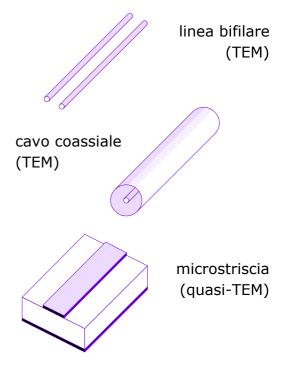
$$u = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$

e, dato che non dipende dalla frequenza (la linea è non dispersiva), i segnali non vengono distorti.

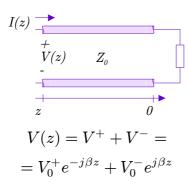
Linee di trasmissione: richiami

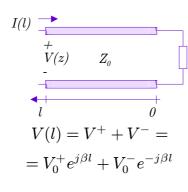
- La teoria delle linee basata sulle equazioni dei telegrafisti vale in realtà sono supponendo che le distribuzioni di campo elettrico e magnetico siano identiche (a parte l'oscillazione nel tempo) a quelle statiche. Questo è rigorosamente vero per linee con dielettrico omogeneo, per cui esistono modi di propagazione TEM.
- Per le microscrisce (assai usate nei circuiti per microonde) questo non è vero. Ciononostante, la distribuzione di campo si discosta poco da quella statica e si parla quindi di modo quasi-TEM.

Possibili realizzazioni:



Potenza incidente e potenza riflessa





Potenza trasferita sulla linea:

$$\begin{split} P &= \frac{1}{2}\mathbf{Re}(VI^{\star}) = \frac{1}{2}\mathbf{Re}[(V^{+} + V^{-})(I^{+\star} + I^{-\star})] \\ &= \frac{1}{2}\mathbf{Re}\left[(V^{+} + V^{-})\left(\frac{V^{+\star}}{Z_{0}} - \frac{V^{-\star}}{Z_{0}}\right)\right] = \\ &= \frac{1}{2Z_{0}}[|V^{+}|^{2} - |V^{-}|^{2}] \end{split}$$

 Definiamo a e b (onde di potenza incidente e riflessa) misurate in [W^{1/2}]:

$$\begin{cases} a \doteq \frac{V^{+}}{\sqrt{Z_{0}}} = \frac{V_{0}^{+}e^{j\beta l}}{\sqrt{Z_{0}}} \\ b \doteq \frac{V^{-}}{\sqrt{Z_{0}}} = \frac{V_{0}^{-}e^{-j\beta l}}{\sqrt{Z_{0}}} \end{cases} \Rightarrow P = \frac{|a|^{2}}{2} - \frac{|b|^{2}}{2}$$

• Lungo una linea di impedenza Z_0 , i moduli di a e b non cambiano, ma cambiano le fasi.

Onde di potenza

 Si possono scrivere tensione e corrente nella linea in funzione di a e b:

$$\begin{cases} V = V^{+} + V^{-} = \sqrt{Z_0}(a+b) \\ I = I^{+} + I^{-} = \frac{V^{+} - V^{-}}{Z_0} = \frac{a-b}{\sqrt{Z_0}} \end{cases}$$

 Sommando e sottraendo le due equazioni precedenti, otteniamo una definizione alternativa di a e b in funzione di tensione e corrente:

$$\begin{cases} a \doteq \frac{V + Z_0 I}{2\sqrt{Z_0}} \\ b \doteq \frac{V - Z_0 I}{2\sqrt{Z_0}} \end{cases}$$

• L'impedenza Z_{θ} (impedenza di normalizzazione) non è necessariamente legata alla presenza di una linea di trasmissione. Le definizioni si possono quindi utilizzare anche per un bipolo generico.

 Se l'impedenza del bipolo è nota, si può scrivere:

$$\begin{cases} a = \frac{(Z+Z_0)I}{2\sqrt{Z_0}} \\ b = \frac{(Z-Z_0)I}{2\sqrt{Z_0}} \end{cases}$$

da cui si vede che la relazione tra a e b può essere interpretata come un coefficiente di riflessione:

$$\frac{b}{a} = \frac{Z - Z_0}{Z + Z_0} = \Gamma$$

in perfetta analogia con quello definito per le linee di trasmissione.

 Quanto fatto per un bipolo generico si può estendere ai quadripoli.

Onde di potenza

 La formula per la potenza assorbita da un bipolo continua a rimanere valida. Ricordando le espressioni per la corrente e la tensione in funzione delle onde di potenza:

$$\begin{cases} V = \sqrt{Z_0}(a+b) \\ I = \frac{V^+ - V^-}{Z_0} = \frac{a-b}{\sqrt{Z_0}} \end{cases}$$

è possibile scrivere la potenza assorbita come:

$$P = \frac{1}{2} \mathbf{Re}(VI^{*}) = \frac{1}{2} \mathbf{Re} \left[\sqrt{Z_{0}} (a+b) \frac{(a-b)^{*}}{\sqrt{Z_{0}}} \right] =$$

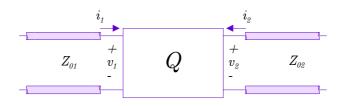
$$= \frac{1}{2} \mathbf{Re} \left[(a+b)(a-b)^{*} \right] = \frac{1}{2} [|a|^{2} - |b|^{2} + \mathbf{Re}(a^{*}b - ab^{*})] =$$

$$= \frac{1}{2} [|a|^{2} - |b|^{2}]$$

che è identica alla formula ricavata per la linea di trasmissione.

Parametri S: definizione

 Definiamo le onde di potenza incidenti e riflesse sulle due porte di un quadripolo:



$$a_1 \doteq \frac{v_1 + Z_{01}i_1}{2\sqrt{Z_{01}}} \quad a_2 \doteq \frac{v_2 + Z_{02}i_2}{2\sqrt{Z_{02}}} \quad b_1 \doteq \frac{v_1 - Z_{01}i_1}{2\sqrt{Z_{01}}} \quad b_2 \doteq \frac{v_2 - Z_{02}i_2}{2\sqrt{Z_{02}}}$$

 Se il quadripolo è lineare, le relazioni tra le onde di potenza saranno relazioni lineari. È possibile, ad esempio, esprimere le onde di potenza riflesse in funzione di quelle incidenti:

$$\begin{cases} b_1 &= S_{11}a_1 + S_{12}a_2 \\ b_2 &= S_{21}a_1 + S_{22}a_2 \end{cases} \qquad [\mathbf{b} = \mathbf{S} \cdot \mathbf{a}]$$

• Questo sistema di equazioni può essere interpretato come una definizione dei quattro parametri di scattering (diffusione) S_{ij} . La conoscenza dei parametri di scattering definisce completamente il comportamento del quadripolo.

Parametri S: definizione

- Nelle definizioni delle onde di potenza, le impedenze Z_{01} e Z_{02} (impedenze di normalizzazione) sono anch'esse arbitrarie. La scelta più comune è però $Z_{01}=Z_{02}$.
- Dalle equazioni descrittive dei parametri di scattering

$$\begin{cases} b_1 = S_{11}a_1 + S_{12}a_2 \\ b_2 = S_{21}a_1 + S_{22}a_2 \end{cases}$$

discendono immediatamente delle definizioni per i singoli parametri:

$$S_{11} = \left(\frac{b_1}{a_1}\right)_{a_2=0} \quad S_{21} = \left(\frac{b_2}{a_1}\right)_{a_2=0}$$

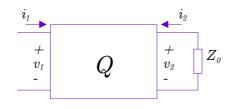
$$S_{12} = \left(\frac{b_1}{a_2}\right)_{a_1 = 0} \ S_{22} = \left(\frac{b_2}{a_2}\right)_{a_1 = 0}$$

- S₁₁ è il coefficiente di riflessione in ingresso con uscita adattata.
- S_{21} è il coefficiente di trasmissione diretta con uscita adattata.
- S_{12} è il coefficiente di trasmissione inversa con ingresso adattato.
- S₂₂ è il coefficiente di riflessione in uscita con ingresso adattato.

Parametri S

• La condizione di adattamento equivale a chiudere la porta relativa sull'impedenza di normalizzazione. Ad esempio, l'adattamento sulla porta di uscita $(a_2=0)$ equivale a:

$$a_2 \doteq \frac{v_2 + Z_0 i_2}{2\sqrt{Z_0}} = 0 \quad \Rightarrow$$
$$\Rightarrow v_2 = -Z_0 i_2$$



 La potenza totale assorbita dal quadripolo vale

$$P = P_1 + P_2 =$$

$$= \frac{1}{2}[|a_1|^2 + |a_2|^2 - |b_1|^2 - |b_2|^2]$$

che è possibile scrivere anche in forma vettoriale come:

$$P = \frac{1}{2} \left(\begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}^* - \begin{bmatrix} b_1 & b_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}^* \right) =$$

$$= \frac{1}{2} [\mathbf{a}^t \cdot \mathbf{a}^* - \mathbf{b}^t \cdot \mathbf{b}^*]$$

Proprietà della matrice di scattering

 Se un quadripolo è reciproco, la sua matrice di scattering è simmetrica:

$$\begin{bmatrix}
S_{11} & S_{21} \\
S_{21} & S_{22}
\end{bmatrix}$$

 Se un quadripolo è simmetrico, la sua matrice ha due soli parametri indipendenti:

$$\left[\begin{array}{cc} S_{11} & S_{21} \\ S_{21} & S_{11} \end{array}\right]$$

 Se un quadripolo è non dissipativo, la coniugata trasposta della matrice è uguale alla sua inversa:

$$(\mathbf{S}^t)^* = \mathbf{S}^{-1}$$

 Infatti la potenza assorbita deve essere nulla

$$P = \frac{1}{2} [\mathbf{a}^{\mathbf{t}} \cdot \mathbf{a}^{*} - \mathbf{b}^{\mathbf{t}} \cdot \mathbf{b}^{*}] =$$

$$= \frac{1}{2} [\mathbf{a}^{\mathbf{t}} \cdot \mathbf{a}^{*} - \mathbf{a}^{\mathbf{t}} \cdot \mathbf{S}^{\mathbf{t}} \cdot \mathbf{S}^{*} \cdot \mathbf{a}^{*}] =$$

$$= \frac{1}{2} \mathbf{a}^{\mathbf{t}} [\mathbf{I} - \mathbf{S}^{\mathbf{t}} \cdot \mathbf{S}^{*}] \mathbf{a}^{*} = 0$$

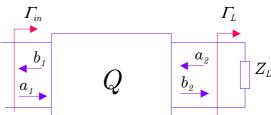
qualunque sia il valore del vettore **a**, da cui la tesi.

Coefficiente di riflessione di ingresso

 Il coefficiente di riflessione di ingresso è il rapporto:

$$\Gamma_{in} \doteq \frac{b_1}{a_1}$$

 Dalle equazioni di definizione dei parametri S si ottiene:



$$b_2 = \frac{a_2}{\Gamma_L} = S_{21}a_1 + S_{22}a_2 \Rightarrow a_2 = \frac{S_{21}\Gamma_L a_1}{1S_{22}\Gamma_L}$$

che sostituita nella prima equazione dà:

$$b_1 = S_{11}a_1 + S_{12}\frac{S_{21}\Gamma_L a_1}{1S_{22}\Gamma_L}$$

e quindi:

$$\Gamma_{in} = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1S_{22}\Gamma_L}$$

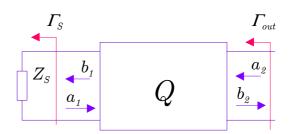
Coefficiente di riflessione di uscita

 Il coefficiente di riflessione di uscita è il rapporto:

$$\Gamma_{out} \doteq \frac{b_2}{a_2}$$

• Con calcoli analoghi si ottiene:

$$\Gamma_{out} = S_{22} + rac{S_{12}S_{21}\Gamma_S}{1S_{11}\Gamma_S}$$



 Nelle equazioni precedenti valgono le relazioni di trasformazione tra impedenza e coefficienti di riflessione:

$$\Gamma_S = \frac{Z_S - Z_0}{Z_S + Z_0}, \quad \Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$$

$$\Gamma_{in} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0}, \quad \Gamma_{out} = \frac{Z_{out} - Z_0}{Z_{out} + Z_0}$$