Chapter 2. Basic Microwave Review I

This second portion of Agilent Technologies’ Basic
Microwave Review will introduce some additional
concepts that are used in high frequency amplifier
design.

Scattering Transfer Parameters

Let’s now proceed to a set of network parameters
used when cascading networks. We recall that we
developed the S-parameters by defining the
reflected waves as dependent variables, and inci-
dent waves as independent variables (Fig. 39a). We
now want to rearrange these equations such that
the input waves a; and b; are the dependent vari-
ables and the output waves a; and by the independ-
ent variables. We’ll call this new parameter set
scattering transfer parameters or T-parameters
(Fig. 39b).
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The T-parameters can be developed by manipulat-
ing the S-parameter equations into the appropriate
form. Notice that the denominator of each of these
terms is So; (Fig. 40).
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We can also find the S-parameters as a function of
the T-parameters.
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While we defined the T-parameters in a particular
way, we could have defined them such that the out-
put waves are the dependent variables and the input
waves are the independent variables. This alter-
nate definition can result in some problems when
designing with active unilateral devices (Fig. 41).

Sl2 S2| - Sn Szz i

- Siz Si.
TA] _ §u —];_
Srz Srz

Figure 41

Using the alternate definition for the transfer
parameters, the denominator in each of these
terms is S;, rather than S,; as we saw earlier.

Working with amplifiers, we often assume the
device to be unilateral, or S5 = 0. This would cause
this alternate T-parameter set to go to infinity.

Both of these definitions for T-parameters can be
encountered in practice. In general, we prefer to
define the T-parameters with the output waves as
the dependent variables, and the input waves as
the independent variables.

We use this new set of transfer parameters when we
want to cascade networks—two stages of an ampli-
fier, or an amplifier with a matching network for
example (Fig. 42a). From measured S-parameter
data, we can define the T-parameters for the two
networks. Since the output waves of the first net-
work are identical to the input waves of the sec-
ond network, we can now simply multiply the two
T-parameter matrices and arrive at a set of equa-
tions for the overall network (Fig. 42b).
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Since matrix multiplication is, in general, not com-
mutative, these T-parameter matrices must be mul-
tiplied in the proper order. When cascading networks,
we’ll have to multiply the matrices in the same order
as the networks are connected. Using the alternate
definition for T-parameters previously described,
this matrix multiplication must be done in reverse
order.

This transfer parameter set becomes very useful
when using computer-aided design techniques
where matrix multiplication is an easy task.

Signal Flow Graphs

If we design manually, however, we can use still
another technique—signal flow graphs—to follow
incident and reflected waves through the networks.
This is a comparatively new technique for microwave
network analysis.

A. Rules
We'll follow certain rules when we build up a net-
work flow graph.

1. Each variable, a,, as, by, and by, will be desig-
nated as a node.

2. Each of the S-parameters will be a branch.

3. Branches enter dependent variable nodes, and
emanate from the independent variable nodes.

4. In our S-parameter equations, the reflected
waves b; and b, are the dependent variables and
the incident waves a; and a, are the independent
variables.

5. Each node is equal to the sum of the branches
entering it.

Let’s now apply these rules to the two S-parameter
equations (Fig. 43a). The first equation has three
nodes: b}, a;, and ay. b; is a dependent node and is
connected to a; through the branch S;; and to node
ay through the branch S;5. The second equation is
constructed similarly. We can now overlay these to
have a complete flow graph for a two-port network
(Fig. 43b).
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The relationship between the traveling waves is
now easily seen. We have a; incident on the net-
work. Part of it transmits through the network to
become part of b,. Part of it is reflected to become
part of b;. Meanwhile, the a, wave entering port
two is transmitted through the network to become
part of by as well as being reflected from port two
as part of b,. By merely following the arrows, we
can tell what’s going on in the network.

This technique will be all the more useful as we
cascade networks or add feedback paths.



B. Application of Flow Graphs

Let’s now look at several typical networks we will
encounter in amplifier designs. A generator with
some internal voltage source and an internal
impedance will have a wave emanating from it. The
flow graph for the generator introduces a new
term, bg (Fig. 44). It’s defined by the impedance of
the generator. The units in this equation look pecu-
liar, but we have to remember that we originally
normalized the traveling waves to \/Z_O The magni-
tude of bg squared then has the dimension of
power.
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For a load, the flow graph is simply [}, the complex
reflection coefficient of the load (Fig. 45).
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When the load is connected to the generator, we
see a wave emanating from the generator incident
on the load, and a wave reflected back to the gen-
erator from the load (Fig. 46).

Figure 46

To demonstrate the utility of flow graphs, let’s
embed a two-port network between a source and

a load. Combining the examples we have seen, we
can now draw a flow graph for the system (Fig. 47).
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Figure 47

We can now apply the rule known as Mason’s rule
(or as it is often called, the non-touching loop rule)
to solve for the value of any node in this network.
Before applying the rule, however, we must first
define several additional terms.

A first order loop is defined as the product of the
branches encountered in a journey starting from a
node and moving in the direction of the arrows
back to that original node. To illustrate this, let’s
start at node a;. One first order loop is S;;[s.
Another first order loop is Sa1IM,S12[ 5. If we now
start at node a,, we find a third first order loop,
Ssol 1. Any of the other loops we encounter is one
of these three first order loops.

A second order loop is defined as the product of any
two non-touching first order loops. Of the three
first order loops just found, only S;;['s and Sssl;, do
not touch in any way. The product of these two
loops establishes the second order loop for this
network. More complicated networks, involving
feedback paths for example, might have several
second order loops.

A third order loop is the product of any three non-
touching first order loops. This example does not
have any third order loops, but again, more compli-
cated networks would have third order loops and
even higher order loops.

Let’s now suppose that we are interested in the
value of by. In this example, bg is the only independ-
ent variable because its value will determine the
value of each of the other variables in the network.
B, therefore, will be a function of bs. To determine
b,, we first have to identify the paths leading from
bs to by. Following the arrows, we see two paths—
(1) S1; and (2) Szl LS.



The next step is to find the non-touching loops
with respect to the paths just found. Here, the path
S11 and the first order loop, Ss,'1, have no nodes or
branches in common. With this condition met, we
can call Sy5l'1, a non-touching loop with respect to
the path S;;.

The other path, So;1,S12, touches all of the net-
work’s first order loops, hence there are no non-
touching loops with respect to this path. Again, in
more complex networks, there would be higher
order non-touching loops.

Let’s now look at the non-touching loop rule itself
(Fig. 48). This equation appears to be rather omi-
nous at first glance, but once we go through it term
by term, it will be less awesome. This rule deter-
mines the ratio of two variables, a dependent to an
independent variable. (In our example, we are
interested in the ratio b; to bg.)
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P, P, etc., are the various paths connecting these
variables.

This term, Y L(1)®, is the sum of all first order
loops that do not touch the first path between the
variables.

This term, Y L(2)®, is the sum of all second order
loops that do not touch that path, and so on down
the line.

Now, this term, Y L(1)®, is the sum of all first order
loops that do not touch the second path.

The denominator in this expression is a function of
the network geometry. It is simply one minus the
sum of all first order loops, plus the sum of all sec-
ond order loops, minus the third order loops, and
SO on.

Let’s now apply this non-touching loop rule to our
network (Fig. 49). The ratio of b;, the dependent
variable, to bg, the independent variable, is equal
to the first path, Sy;, multiplied by one minus the
non-touching first order loop with respect to this
path, FLSZZ.
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The second path, Ss;I1,S1, is simply multiplied by
one because there are no non-touching loops with
respect to this path.

The denominator is one minus the sum of first
order loops plus the second order loop.

This concludes our example. With a little experi-
ence drawing flow graphs of complex networks,
you can see how this technique will facilitate your
network analysis. In fact, using the flow graph
technique, we can now derive several expressions
for power and gain that are of interest to the cir-
cuit designer.

First of all, we need to know the power delivered to a
load. Remember that the square of the magnitudes
of the incident and reflected waves has the dimen-
sion of power. The power delivered to a load is
then the difference between the incident power
and the reflected power, P4 = |a|? —|b |2

The power available from a source is that power deliv-
ered to a conjugately matched load. This implies

that the reflection coefficient of the load is the con-
jugate of the source reflection coefficient, ['s* = I'1.
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Looking at the flow graph describing these condi-
tions (Fig. 50), we see that the power available
from the source is:

Pavs = |b|2_|a|2

Using the flow graph techniques previously
described, we see that:



The power available from the source reduces to
(Fig. 51):
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We can also develop voltage and power gain equa-
tions that will be useful in our amplifier designs
using these flow graph techniques. For a two-port
network, the voltage gain is equal to the total volt-
age at the output divided by the total voltage at the
input,

Av=227%Ds
a; + by

If we divide the numerator and denominator by bs,
we can relate each of the dependent variables of the
system to the one independent variable (Fig. 52a).
Now we have four expressions or four ratios that
we can determine from the non-touching loop rule.
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We can simplify this derivation by remembering
that the denominator in the expression for the
non-touching loop rule is a function of the network
geometry. It will be the same for each of these
ratios, and will cancel out in the end. So we only
need to be concerned with the numerators of these
ratios.

Let’s trace through a couple of these expressions to
firm up our understanding of the process (Fig. 52b).
As is connected to bg through the path Sg;lM;,. All
first order loops touch this path, so this path is
simply multiplied by one. by is connected to bg
through the path Sy;. All first order loops also
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touch this path. a; is connected to bg directly, and
there is one non-touching loop, Seol1. We have
already determined the ratio of b; to bg, so we can
simply write down the numerator of that expres-
sion. We have now derived the voltage gain of the
two-port network.

The last expression we wish to develop is that for
transducer power gain. This will be very important
in the amplifier design examples contained in the
final section of this seminar. Transducer power
gain is defined as the power delivered to a load
divided by the power available from a source.
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We have already derived these two expressions.
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What remains is to solve the ratio by to bg (Fig. 53a).
The only path connecting bg and by is Ss;. There are
no non-touching loops with respect to this path.
The denominator is the same as in the previous
example: one minus the first order loops plus the
second order loop. Taking the magnitude of this
ratio, squaring, and substituting the result yields
the expression for transducer power gain of a two-
port network (Fig. 53b).

a) b3= S'l
b S“ Z’rL - SJ‘SllrLr + Sllr Szlrl.
b) G, = 1Sy 20 — [T — 0D

[(1 =8, [YA — Suuly) — S, ST

Figure 53

Needless to say, this is not a simple relationship, as
the terms are generally complex quantities. Calcu-
lator or computer routines will greatly facilitate the
circuit designer’s task.

Later, when designing amplifiers, we will see that
we can simplify this expression by assuming that
the amplifier is a unilateral device, or S5 = 0. In
general, however, this assumption cannot be made,
and we will be forced to deal with this expression.



One of the things you might want to do is to opti-
mize or maximize the transducer gain of the net-
work. Since the S-parameters at one frequency are
constants depending on the device selected and
the bias conditions, we have to turn our attention
to the source and load reflection coefficients.

Stability Considerations

To maximize the transducer gain, we must conju-
gately match the input and the output. Before we
do this, we will have to look at what might happen
to the network in terms of stability—will the ampli-
fier oscillate with certain values of impedance
used in the matching process?

There are two traditional expressions used when
speaking of stability: conditional and uncondi-
tional stability.

A network is conditionally stable if the real part of Z;,
and Z,, is greater than zero for some positive real
source and load impedances at a specific frequency.

A network is unconditionally stable if the real part of
Zin and Z,, is greater than zero for all positive real
source and load impedances at a specific frequency.

It is important to note that these two conditions
apply only at one specific frequency. The condi-
tions we will now discuss will have to be investi-
gated at many frequencies to ensure broadband
stability. Going back to our Smith Chart discus-
sion, we recall that positive real source and load
impedances imply: [s]and || <1.
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Let’s look first at the condition where we want to
conjugately match the network to the load and
source to achieve maximum transducer gain (Fig. 54).
Under these conditions, we can say that the network
will be stable if this factor, K, is greater than one
(Fig. 55). Conjugately matched conditions mean

that the reflection coefficient of the source, [g, is
equal to the conjugate of the input reflection coef-
ficient, I,.

g =Ty

L is equal to the conjugate of the output reflection
coefficient, I .
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A precaution must be mentioned here. The K factor
must not be considered alone. If we were operating
under matched conditions in order to achieve max-
imum gain, we would have to consider the following:
(1) What effect would temperature changes or drift-
ing S-parameters of the transistor have on the sta-
bility of the amplifier? (2) We would also have to
be concerned with the effect on stability as we sub-
stitute transistors into the circuit. (3) Would these
changing conditions affect the conjugate match or
the stability of the amplifier? Therefore, we really
need to consider these other conditions in addition
to the K factor.

Looking at the input and output reflection coeffi-
cient equations, we see a similarity of form (Fig. 56).
The only difference is that S;; replaces Sy, and [,
replaces [s.
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If we set this equation, |[;,], equal to one, a
boundary would be established. On one side of the
boundary, we would expect |[;,| <1. On the other
side, we would expect |[i,| >1.

Let’s first find the boundary by solving this expres-
sion (Fig. 57). We insert the real and imaginary
values for the S-parameters and solve for ['1.
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The solutions for '{, will lie on a circle. The radius
of the circle will be given by this expression as a
function of S-parameters (Fig. 58a).
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The center of the circle will have this form (Fig. 58b).
Having measured the S-parameters of a two-port
device at one frequency, we can calculate these
quantities.

If we now plot these values on a Smith Chart, we
can determine the locus of all values of ', that
make || = 1.

This circle then represents the boundary (Fig. 59).
The area either inside or outside the circle will
represent a stable operating condition.

I, on stability circle yields
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Figure 59
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To determine which area represents this stable oper-
ating condition, let’s make Z;, = 50 ohms, or '}, = 0.
This represents the point at the center of the Smith
Chart. Under these conditions, |Ii,| = |Si1].

Let’s now assume that S;; has been measured and
its magnitude is less than one. [;,’s magnitude is
also less than one. This means that this point, '}, = 0,
represents a stable operating condition. This region
(Fig. 60) then represents the stable operating con-
dition for the entire network.
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If we select another value of ', that falls inside the
stability circle, we would have an input reflection
coefficient that would be greater than one, and the
network would be potentially unstable.

If we only deal with passive loads, that is, loads
having a reflection coefficient less than or equal to
one, then we only have to stay away from those
[1’s that are in this region (Fig. 61) to ensure sta-
ble operation for the amplifier we are designing.
Chances are, we should also stay away from imped-
ances in the border region, since the other factors
like changing temperature, the aging of the transis-
tors, or the replacement of transistors might cause
the center or radius of the stability circle to shift.
The impedance of the load could then fall in the
expanded unstable region, and we would again be
in trouble.



Figure 61

If, on the other hand, |S;;| >1, with Z;, = 50 Q, then
this area would be the stable region and this
region the unstable area (Fig. 62).

Figure 62

To ensure that we have an unconditionally stable con-
dition at a given frequency in our amplifier design,
we must be able to place any passive load on the
network and drive it with any source impedance
without moving into an unstable condition.

From a graphical point of view, we want to be sure
that the stability circle falls completely outside the
Smith Chart, and we want to make sure that the
inside of the stability circle represents the unstable
region (Fig. 63). The area outside the stability cir-
cle, including the Smith Chart, would then repre-
sent the stable operating region.

Figure 63

To satisfy this requirement, we must ensure that
the magnitude of the vector, Cy, the distance from
the center of the Smith Chart to the center of the
stability circle, minus the radius of the stability
circle, 1, is greater than one. This means that the
closest point on the stability circle would be out-
side the unit radius circle or Smith Chart.

To ensure that the region inside the Smith Chart
represents the stable operating condition, the
input or output impedance of the network must
have a real part greater than zero when the net-
work is terminated in 50 ohms. For completeness,
we must also add the output stability circle to gain
a better understanding of this concept. This means
that the magnitude of S;; and Sy, must be less than
one.

One word of caution about stability.

S-parameters are typically measured at some par-
ticular frequency. The stability circles are drawn
for that frequency. We can be sure that the ampli-
fier will be stable at that frequency, but will it
oscillate at some other frequency either inside or
outside the frequency range of the amplifier?
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Typically, we want to investigate stability over a
broad range of frequencies and construct stability
circles wherever we might suspect a problem.
Shown here are the stability circles drawn for
three different frequencies (Fig. 64). To ensure
stability between f; and f3, we stay away from
impedances in this (shaded) area. While this
process may sound tedious, we do have some
notion based on experience where something
may get us into trouble.

Figure 64
Stability is strongly dependent on the |Sis| |Sa1]

product (Fig. 65). |Ss;| is a generally decreasing
function of frequency from f on.
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|S12] is an increasing function.

Looking at the [Si2| |Ss;| product, we see that it
increases below fg, flattens out, then decreases at
higher frequencies.

It is in this flat region that we must worry about
instability.

On the other hand, if we synthesize elements such
as inductors by using high impedance transmission
lines, we might have capacitance rather than
inductance at higher frequencies, as seen here on
the Impedance Phase plot (Fig. 66). If we suspect
that this might cause oscillation, we would investi-
gate stability in the region where the inductor is
capacitive. Using tunnel diodes having negative
impedance all the way down to dc, we would have
to investigate stability right on down in frequency
to make sure that oscillations did not occur outside
the band in which we are working.
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